A subgroup H of G is c-permutable in G if there exists a permutable subgroup P of G such that HP=G and H∩P≦HpG, where HpG is the largest permutable subgroup of G contained in H. A group G is called CPT-group if c-permutability is transitive in G. A number of new characterizations of finite solvable CPT-groups are given.
[1] Baer, R. 1957 Classes of finite groups and their properties Illinois J. Math. 1 115–187.
[2] Beidleman, James C., Brewster, Ben, Robinson, Derek J. S. 1999 Criteria for permutability to be transitive in finite groups J. Algebra 222 400–412 .
[3] Doerk, K., Hawkes, T. 1992 Finite Soluble Groups De Gruyter Berlin .
[4] Kegel, O. 1962 Sylow-Gruppen und Subnormalteiler endlicher Gruppen Math. Z. 78 205–221 .
[5] Ore, O. 1939 Contributions to the theory of groups of finite order Duke Math. J. 5 431–460 .
[6] Wang, Y. 1996 C-normality of groups and its properties J. Algebra 78 101–108.
[7] Zacher, G., I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8) 37 (1964), 150–154.