Authors:
Khaled A. Al-Sharo Department of Mathematics, AL al-Bayt University, Mafraq, Jordane-mail: email>sharo_kh@yahoo.com

Search for other papers by Khaled A. Al-Sharo in
Current site
Google Scholar
PubMed
Close
and
Ibrahim A. I. Suleiman Department of Mathematics & Statistics, Mutah University, Karak, Jordan

Search for other papers by Ibrahim A. I. Suleiman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A subgroup H of G is c-permutable in G if there exists a permutable subgroup P of G such that HP=G and HPHpG, where HpG is the largest permutable subgroup of G contained in H. A group G is called CPT-group if c-permutability is transitive in G. A number of new characterizations of finite solvable CPT-groups are given.

  • [1] Baer, R. 1957 Classes of finite groups and their properties Illinois J. Math. 1 115187.

  • [2] Beidleman, James C., Brewster, Ben, Robinson, Derek J. S. 1999 Criteria for permutability to be transitive in finite groups J. Algebra 222 400412 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [3] Doerk, K., Hawkes, T. 1992 Finite Soluble Groups De Gruyter Berlin .

  • [4] Kegel, O. 1962 Sylow-Gruppen und Subnormalteiler endlicher Gruppen Math. Z. 78 205221 .

  • [5] Ore, O. 1939 Contributions to the theory of groups of finite order Duke Math. J. 5 431460 .

  • [6] Wang, Y. 1996 C-normality of groups and its properties J. Algebra 78 101108.

  • [7] Zacher, G., I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8) 37 (1964), 150154.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 1 0 0
May 2024 30 0 0
Jun 2024 20 0 0
Jul 2024 2 0 0
Aug 2024 14 0 0
Sep 2024 21 0 0
Oct 2024 20 0 0