We define ζμ-sets, (ζ,μ)-closed sets and generalized ζμ-sets in a generalized topological space and investigate properties of several low separation axioms of generalized topologies constructed by the families of these sets. Characterizations of some properties of (ζ,μ)-R0 and (ζ,μ)-R1 generalized topological spaces will be given.
[1] Caldas, M. Jafari, S. Noiri, T. 2004 Characterizations of Λθ-R0 and Λθ-R1 topological spaces Acta Math. Hungar. 103 85–95 .
[2] Császár, Á. 1997 Generalized open sets Acta Math. Hungar. 75 65–87 .
[3] Császár, Á. 2002 Generalized topology, generalized continuity Acta Math. Hungar. 96 351–357 .
[4] Császár, Á. 2004 Extremally disconnected generalized topologies Annales Univ. Sci. Budapest. 47 91–96.
[5] Császár, Á. 2005 Generalized open sets in generalized topologies Acta Math. Hungar. 106 53–66 .
[6] Császár, Á. 2007 Modification of generalized topologies via hereditary classes Acta Math. Hungar. 115 29–36 .
[7] Davis, A. S. 1961 Indexed systems of neighborhoods for general topological spaces Amer. Math. Soc. 68 886–893.
[8] Dorsett, C. 1978 Semi-T2, semi-R1 and semi-R0 topological spaces Ann. Soc. Sci. Bruxelles 92 143–150.
[9] Dube, K. K. 1974 A note on R0 topological spaces Mat. Vesnik 11 203–208.
[10] Dube, K. K. 1982 A note on R1 topological spaces Period. Math. Hung. 13 267–271 .
[11] Dunham, W. 1977 -spaces Kyungpook Math. J. 17 161–169.
[12] Levine, N. 1970 Generalized closed sets in topology Rend. Circ. Mat. Palermo (2) 19 89–96 .
[13] Maheshwari, S. N. Prasad, R. 1975 On (R0)s-spaces Portug. Math. 34 213–217.
[14] Murdeshwar, M. G. Naimpally, S. A. 1966 R1-topological spaces Canad. Math. Bull. 9 521–523 .
[15] Naimpally, S. A. 1967 On R0-topological spaces Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 53–54.
[16] Roy, B. 2010 On generalized R0 and R1 spaces Acta Math. Hungar. 127 291–300 .
[17] Shanin, N. A. 1943 On separation in topological spaces Dokl. Akad. Nauk SSSR 38 110–113.