Cofinal completeness of a metric space, which is a property between completeness and compactness, can be characterized in terms of a measure of local compactness functional [7]. Using this functional, we introduce and then study the variational notion of cofinally complete subset of a metric space.
[1] Atsuji, M. 1958 Uniform continuity of continuous functions of metric spaces Pacific J. Math. 8 11–16.
[2] Attouch, H. Lucchetti, R. Wets, R. 1991 The topology of the ρ-Hausdorff distance Ann. Mat. Pura Appl. 160 303–320 .
[3] Beer, G. 1985 Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance Proc. Amer. Math. Soc. 95 653–658 .
[4] Beer, G. 1986 More about metric spaces on which continuous functions are uniformly continuous Bull. Australian Math. Soc. 33 397–406 .
[5] Beer, G. 1988 UC spaces revisited Amer. Math. Monthly 95 737–739 .
[6] Beer, G. 1993 Topologies on Closed and Closed Convex Sets Kluwer Academic Publishers Dordrecht, Holland.
[7] Beer, G. 2008 Between compactness and completeness Top. Appl. 155 503–514 .
[8] Beer, G. 2009 Operator topologies and graph convergence J. Convex Anal. 16 687–698.
[9] Beer, G., Costantini, C. and Levi, S., Bornological convergence and shields, to appear in Mediterranean J. Math..
[10] Beer, G., Costantini, C. and Levi, S., Total boundedness in metrizable spaces, to appear in Houston J. Math..
[11] Beer, G. Concilio Di, A. 1991 Uniform continuity on bounded sets and the Attouch–Wets topology Proc. Amer. Math. Soc. 112 235–243 .
[12] Beer, G. Maio Di, G. 2010 Cofinal completeness of the Hausdorff metric topology Fund. Math. 208 75–85 .
[13] Beer, G. Levi, S. 2008 Pseudometrizable bornological convergence is Attouch–Wets convergence J. Convex Anal. 15 439–453.
[14] Beer, G. Levi, S. 2009 Strong uniform continuity J. Math. Anal. Appl. 350 568–589 .
[15] Beer, G. Levi, S. 2010 Uniform continuity, uniform convergence, and shields Set-Valued and Var. Anal. 18 251–275 .
[16] Beer, G. Naimpally, S. Rodríguez-López, J. 2008 -topologies and bounded convergences J. Math. Anal. Appl. 339 542–552 .
[17] Borwein, J. Vanderwerff, J. 1996 Epigraphical and uniform convergence of convex functions Trans. Amer. Math. Soc. 348 1617–1631 .
[18] Burdick, B. 2000 On linear cofinal completeness Top. Proc. 25 435–455.
[19] Corson, H. 1959 The determination of paracompactness by uniformities Amer. J. Math. 80 185–190 .
[20] Maio Di, G. Meccariello, E. Naimpally, S. 2004 Uniformizing (proximal) △-topologies Top. Appl. 137 99–113 .
[21] Engelking, R. 1977 General Topology Polish Scientific Publishers Warsaw.
[22] García-Máynez, A. Romaguera, S. 1999 Perfect pre-images of cofinally complete metric spaces Comment. Math. Univ. Carolinae 40 335–342.
[23] Hohti, A. 1981 On uniform paracompactness Ann. Acad. Sci. Fenn. Series A Math. Diss. 36 1–46.
[24] Howes, N. 1971 On completeness Pacific J. Math. 38 431–440.
[25] Howes, N. 1995 Modern Analysis and Topology Springer New York .
[26] Jain, T. Kundu, S. 2006 Atsuji spaces: equivalent conditions Topology Proc. 30 301–325.
[27] Klein, E. Thompson, A. 1984 Theory of Correspondences Wiley New York.
[28] Lechicki, A. Levi, S. Spakowski, A. 2004 Bornological convergences J. Math. Anal. Appl. 297 751–770 .
[29] Lucchetti, R. 2006 Convexity and Well-posed Problems Springer Verlag Berlin.
[30] Nadler, S. West, T. 1981 A note on Lesbesgue spaces Topology Proc. 6 363–369.
[31] Naimpally, S. 2009 Proximity Approach to Problems in Topology and Analysis Oldenbourg Munich .
[32] Rainwater, J. 1959 Spaces whose finest uniformity is metric Pacific J. Math 9 567–570.
[33] Rice, M. 1977 A note on uniform paracompactness Proc. Amer. Math. Soc. 62 359–362 .
[34] Romageura, S. 1998 On cofinally complete metric spaces Q & A in Gen. Top. 16 165–170.
[35] Toader, G. 1978 On a problem of Nagata Mathematica (Cluj) 20 77–79.
[36] Waterhouse, W. 1965 On UC spaces Amer. Math. Monthly 72 634–635 .
[37] Willard, S. 1970 General Topology Addison-Wesley Reading, MA.