Authors:
Gerald BeerDepartment of Mathematics, California State University Los Angeles, 5151 State University Drive, Los Angeles, CA, 90032, USA

Search for other papers by Gerald Beer in
Current site
Google Scholar
PubMed
Close
and
Giuseppe Di MaioFacoltà di Scienze, Dipartimento di Matematica, Seconda Univerità degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy

Search for other papers by Giuseppe Di Maio in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cofinal completeness of a metric space, which is a property between completeness and compactness, can be characterized in terms of a measure of local compactness functional [7]. Using this functional, we introduce and then study the variational notion of cofinally complete subset of a metric space.

  • [1] Atsuji, M. 1958 Uniform continuity of continuous functions of metric spaces Pacific J. Math. 8 1116.

  • [2] Attouch, H. Lucchetti, R. Wets, R. 1991 The topology of the ρ-Hausdorff distance Ann. Mat. Pura Appl. 160 303320 .

  • [3] Beer, G. 1985 Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance Proc. Amer. Math. Soc. 95 653658 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [4] Beer, G. 1986 More about metric spaces on which continuous functions are uniformly continuous Bull. Australian Math. Soc. 33 397406 .

  • [5] Beer, G. 1988 UC spaces revisited Amer. Math. Monthly 95 737739 .

  • [6] Beer, G. 1993 Topologies on Closed and Closed Convex Sets Kluwer Academic Publishers Dordrecht, Holland.

  • [7] Beer, G. 2008 Between compactness and completeness Top. Appl. 155 503514 .

  • [8] Beer, G. 2009 Operator topologies and graph convergence J. Convex Anal. 16 687698.

  • [9] Beer, G., Costantini, C. and Levi, S., Bornological convergence and shields, to appear in Mediterranean J. Math..

  • [10] Beer, G., Costantini, C. and Levi, S., Total boundedness in metrizable spaces, to appear in Houston J. Math..

  • [11] Beer, G. Concilio Di, A. 1991 Uniform continuity on bounded sets and the Attouch–Wets topology Proc. Amer. Math. Soc. 112 235243 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [12] Beer, G. Maio Di, G. 2010 Cofinal completeness of the Hausdorff metric topology Fund. Math. 208 7585 .

  • [13] Beer, G. Levi, S. 2008 Pseudometrizable bornological convergence is Attouch–Wets convergence J. Convex Anal. 15 439453.

  • [14] Beer, G. Levi, S. 2009 Strong uniform continuity J. Math. Anal. Appl. 350 568589 .

  • [15] Beer, G. Levi, S. 2010 Uniform continuity, uniform convergence, and shields Set-Valued and Var. Anal. 18 251275 .

  • [16] Beer, G. Naimpally, S. Rodríguez-López, J. 2008 -topologies and bounded convergences J. Math. Anal. Appl. 339 542552 .

  • [17] Borwein, J. Vanderwerff, J. 1996 Epigraphical and uniform convergence of convex functions Trans. Amer. Math. Soc. 348 16171631 .

  • [18] Burdick, B. 2000 On linear cofinal completeness Top. Proc. 25 435455.

  • [19] Corson, H. 1959 The determination of paracompactness by uniformities Amer. J. Math. 80 185190 .

  • [20] Maio Di, G. Meccariello, E. Naimpally, S. 2004 Uniformizing (proximal) △-topologies Top. Appl. 137 99113 .

  • [21] Engelking, R. 1977 General Topology Polish Scientific Publishers Warsaw.

  • [22] García-Máynez, A. Romaguera, S. 1999 Perfect pre-images of cofinally complete metric spaces Comment. Math. Univ. Carolinae 40 335342.

    • Search Google Scholar
    • Export Citation
  • [23] Hohti, A. 1981 On uniform paracompactness Ann. Acad. Sci. Fenn. Series A Math. Diss. 36 146.

  • [24] Howes, N. 1971 On completeness Pacific J. Math. 38 431440.

  • [25] Howes, N. 1995 Modern Analysis and Topology Springer New York .

  • [26] Jain, T. Kundu, S. 2006 Atsuji spaces: equivalent conditions Topology Proc. 30 301325.

  • [27] Klein, E. Thompson, A. 1984 Theory of Correspondences Wiley New York.

  • [28] Lechicki, A. Levi, S. Spakowski, A. 2004 Bornological convergences J. Math. Anal. Appl. 297 751770 .

  • [29] Lucchetti, R. 2006 Convexity and Well-posed Problems Springer Verlag Berlin.

  • [30] Nadler, S. West, T. 1981 A note on Lesbesgue spaces Topology Proc. 6 363369.

  • [31] Naimpally, S. 2009 Proximity Approach to Problems in Topology and Analysis Oldenbourg Munich .

  • [32] Rainwater, J. 1959 Spaces whose finest uniformity is metric Pacific J. Math 9 567570.

  • [33] Rice, M. 1977 A note on uniform paracompactness Proc. Amer. Math. Soc. 62 359362 .

  • [34] Romageura, S. 1998 On cofinally complete metric spaces Q & A in Gen. Top. 16 165170.

  • [35] Toader, G. 1978 On a problem of Nagata Mathematica (Cluj) 20 7779.

  • [36] Waterhouse, W. 1965 On UC spaces Amer. Math. Monthly 72 634635 .

  • [37] Willard, S. 1970 General Topology Addison-Wesley Reading, MA.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2022 0 0 0
Sep 2022 0 0 0
Oct 2022 2 0 0
Nov 2022 0 0 0
Dec 2022 1 0 0
Jan 2023 0 0 0
Feb 2023 0 0 0