Authors:
Afshin AminiDepartment of Mathematics, College of Sciences, Shiraz University, Shiraz 71457, Iran

Search for other papers by Afshin Amini in
Current site
Google Scholar
PubMed
Close
,
Babak AminiDepartment of Mathematics, College of Sciences, Shiraz University, Shiraz 71457, Iran

Search for other papers by Babak Amini in
Current site
Google Scholar
PubMed
Close
,
Ehsan MomtahanDepartment of Mathematics, Yasouj University, Yasouj, Iran

Search for other papers by Ehsan Momtahan in
Current site
Google Scholar
PubMed
Close
, and
Mohammad Hassan Shirdareh HaghighiDepartment of Mathematics, College of Sciences, Shiraz University, Shiraz 71457, Iran

Search for other papers by Mohammad Hassan Shirdareh Haghighi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We associate a graph Γ+(R) to a ring R whose vertices are nonzero proper right ideals of R and two vertices I and J are adjacent if I+J=R. Then we try to translate properties of this graph into algebraic properties of R and vice versa. For example, we characterize rings R for which Γ+(R) respectively is connected, complete, planar, complemented or a forest. Also we find the dominating number of Γ+(R).

  • [1] Akbari, S. Maimani, H. R. Yassemi, S. 2003 When a zero-divisor graph is planar or a complete r-partite graph J. Algebra 270 169180 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [2] Anderson, D. D. Naseer, M. 1993 Beck's coloring of a commutative ring J. Algebra 159 500514 .

  • [3] Anderson, D. F. Badawi, A. 2008 On the zero-divisor graph of a ring Comm. Algebra 36 30733092 .

  • [4] Anderson, D. F. Levy, R. Shapiro, J. 2003 Zero-divisor graphs, von Neumann regular rings, and Boolean algebras J. Pure Appl. Algebra 180 221241 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [5] Anderson, D. F. Livingston, P. S. 1999 The zero-divisor graph of a commutative ring J. Algebra 217 434447 .

  • [6] Anderson, D. F. Mulay, S. B. 2007 On the diameter and girth of a zero-divisor graph J. Pure Appl. Algebra 210 543550 .

  • [7] Azarpanah, F. Motamedi, M. 2005 Zero-divisor graph of C(X) Acta Math. Hungar. 108 2536 .

  • [8] Beck, I. 1988 Coloring of commutative rings J. Algebra 116 208226 .

  • [9] Biggs, N. 1973 Algebraic Graph Theory Cambridge University Press Cambridge.

  • [10] Gillman, L. Jerison, M. 1976 Rings of Continuous Functions Springer-Verlag New York.

  • [11] Levy, R. McDowell, R. H. 1975 Dense subsets of βX Proc. Amer. Math. Soc. 50 426430.

  • [12] Levy, R. Shapiro, J. 2002 The zero-divisor graph of von Neumann regular rings Comm. Algebra 30 745750 .

  • [13] Momtahan, E. 2008 Algebraic characterization of dense-separability among compact spaces Comm. Algebra 36 14841488 .

  • [14] Motamedi, M. 2002 a-Artinian modules Far East J. Math. Sci. (FJMS) 4 329336.

  • [15] Mulay, S. B. 2002 Cycles and symmetries of zero-divisors Comm. Algebra 30 35333558 .

  • [16] Munkres, J. R. 1975 Topology a First Course Prentice-Hall, Inc. Englewood Cliffs, New Jersey.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2022 0 0 0
Sep 2022 0 0 0
Oct 2022 1 0 0
Nov 2022 0 0 0
Dec 2022 0 0 0
Jan 2023 0 0 1
Feb 2023 0 0 0