We associate a graph Γ+(R) to a ring R whose vertices are nonzero proper right ideals of R and two vertices I and J are adjacent if I+J=R. Then we try to translate properties of this graph into algebraic properties of R and vice versa. For example, we characterize rings R for which Γ+(R) respectively is connected, complete, planar, complemented or a forest. Also we find the dominating number of Γ+(R).
[1] Akbari, S. Maimani, H. R. Yassemi, S. 2003 When a zero-divisor graph is planar or a complete r-partite graph J. Algebra 270 169–180 .
[2] Anderson, D. D. Naseer, M. 1993 Beck's coloring of a commutative ring J. Algebra 159 500–514 .
[3] Anderson, D. F. Badawi, A. 2008 On the zero-divisor graph of a ring Comm. Algebra 36 3073–3092 .
[4] Anderson, D. F. Levy, R. Shapiro, J. 2003 Zero-divisor graphs, von Neumann regular rings, and Boolean algebras J. Pure Appl. Algebra 180 221–241 .
[5] Anderson, D. F. Livingston, P. S. 1999 The zero-divisor graph of a commutative ring J. Algebra 217 434–447 .
[6] Anderson, D. F. Mulay, S. B. 2007 On the diameter and girth of a zero-divisor graph J. Pure Appl. Algebra 210 543–550 .
[7] Azarpanah, F. Motamedi, M. 2005 Zero-divisor graph of C(X) Acta Math. Hungar. 108 25–36 .
[8] Beck, I. 1988 Coloring of commutative rings J. Algebra 116 208–226 .
[9] Biggs, N. 1973 Algebraic Graph Theory Cambridge University Press Cambridge.
[10] Gillman, L. Jerison, M. 1976 Rings of Continuous Functions Springer-Verlag New York.
[11] Levy, R. McDowell, R. H. 1975 Dense subsets of βX Proc. Amer. Math. Soc. 50 426–430.
[12] Levy, R. Shapiro, J. 2002 The zero-divisor graph of von Neumann regular rings Comm. Algebra 30 745–750 .
[13] Momtahan, E. 2008 Algebraic characterization of dense-separability among compact spaces Comm. Algebra 36 1484–1488 .
[14] Motamedi, M. 2002 a-Artinian modules Far East J. Math. Sci. (FJMS) 4 329–336.
[15] Mulay, S. B. 2002 Cycles and symmetries of zero-divisors Comm. Algebra 30 3533–3558 .
[16] Munkres, J. R. 1975 Topology a First Course Prentice-Hall, Inc. Englewood Cliffs, New Jersey.