View More View Less
  • 1 Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71457, Iran
  • | 2 Department of Mathematics, Yasouj University, Yasouj, Iran
Restricted access

Abstract

We associate a graph Γ+(R) to a ring R whose vertices are nonzero proper right ideals of R and two vertices I and J are adjacent if I+J=R. Then we try to translate properties of this graph into algebraic properties of R and vice versa. For example, we characterize rings R for which Γ+(R) respectively is connected, complete, planar, complemented or a forest. Also we find the dominating number of Γ+(R).

  • [1] Akbari, S. Maimani, H. R. Yassemi, S. 2003 When a zero-divisor graph is planar or a complete r-partite graph J. Algebra 270 169180 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [2] Anderson, D. D. Naseer, M. 1993 Beck's coloring of a commutative ring J. Algebra 159 500514 .

  • [3] Anderson, D. F. Badawi, A. 2008 On the zero-divisor graph of a ring Comm. Algebra 36 30733092 .

  • [4] Anderson, D. F. Levy, R. Shapiro, J. 2003 Zero-divisor graphs, von Neumann regular rings, and Boolean algebras J. Pure Appl. Algebra 180 221241 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [5] Anderson, D. F. Livingston, P. S. 1999 The zero-divisor graph of a commutative ring J. Algebra 217 434447 .

  • [6] Anderson, D. F. Mulay, S. B. 2007 On the diameter and girth of a zero-divisor graph J. Pure Appl. Algebra 210 543550 .

  • [7] Azarpanah, F. Motamedi, M. 2005 Zero-divisor graph of C(X) Acta Math. Hungar. 108 2536 .

  • [8] Beck, I. 1988 Coloring of commutative rings J. Algebra 116 208226 .

  • [9] Biggs, N. 1973 Algebraic Graph Theory Cambridge University Press Cambridge.

  • [10] Gillman, L. Jerison, M. 1976 Rings of Continuous Functions Springer-Verlag New York.

  • [11] Levy, R. McDowell, R. H. 1975 Dense subsets of βX Proc. Amer. Math. Soc. 50 426430.

  • [12] Levy, R. Shapiro, J. 2002 The zero-divisor graph of von Neumann regular rings Comm. Algebra 30 745750 .

  • [13] Momtahan, E. 2008 Algebraic characterization of dense-separability among compact spaces Comm. Algebra 36 14841488 .

  • [14] Motamedi, M. 2002 a-Artinian modules Far East J. Math. Sci. (FJMS) 4 329336.

  • [15] Mulay, S. B. 2002 Cycles and symmetries of zero-divisors Comm. Algebra 30 35333558 .

  • [16] Munkres, J. R. 1975 Topology a First Course Prentice-Hall, Inc. Englewood Cliffs, New Jersey.

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 1 0 0
Oct 2021 0 0 0