View More View Less
  • 1 Dipartimento di Matematica e Informatica, Università della Basilicata, 85100 Potenza, Italy
Restricted access

Abstract

Finite analogs of the classical Beltrami–Klein model of the Bolyai–Lobachevskii plane arising from ovals, unitals and maximal (k,n)-arcs are of interest in finite geometry. Three new results are obtained which give characterizations of such models equipped with many symmetries.

  • [1] Aguglia, A. Giuzzi, L. Korchmáros, G. 2008 Algebraic curves and maximal arcs J. Algebraic Combin. 28 531544 .

  • [2] Aguglia, A. Giuzzi, L. Korchmáros, G. 2010 Constructions of unitals in Desarguesian planes Discrete Math. 310 31623167 .

  • [3] Ball, S. Blokhuis, A. Gács, A. Sziklai, P. Weiner, Zs. 2007 On linear codes whose weights and length have a common divisor Adv. Math. 211 94104 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [4] Ball, S. Blokhuis, A. Mazzocca, F. 1997 Maximal arcs in Desarguesian planes of odd order do not exist Combinatorica 17 3141 .

  • [5] Barwick, S. Ebert, G. L. 2008 Unitals in Projective Planes Springer Monographs in Mathematics Springer New York.

  • [6] Biliotti, M. Korchmáros, G. 1986 Collineation groups strongly irreducible on an oval Combinatorics '84 Bari 1984 North-Holland Math. Stud. 123 North-Holland Amsterdam 8597.

    • Search Google Scholar
    • Export Citation
  • [7] Biliotti, M. Korchmáros, G. 1987 Hyperovals with a transitive collineation group Geom. Dedicata 24 269281 .

  • [8] Biliotti, M. Korchmáros, G. 1989 Collineation groups preserving a unital in a projective plane of even order Geom. Dedicata 31 333344 .

  • [9] Biliotti, M. Korchmáros, G. 1989 Collineation groups preserving a unital of a projective plane of odd order J. Algebra 122 130149 .

  • [10] Biliotti, M. Korchmáros, G. 1991 Some new results on collineation groups preserving an oval of a finite projective plane Combinatorics '88, Vol. 1 Ravello 1988 Res. Lecture Notes Math. Mediterranean Rende 159170.

    • Search Google Scholar
    • Export Citation
  • [11] Biscarini, P. Korchmáros, G. 1984 Ovali di un piano di Galois di ordine pari dotate di un gruppo di col lineazioni transitivo sui loro punti Proceedings of the Conference on Combinatorial and Incidence Geometry: Principles and Applications La Mendola 1982 Rend. Sem. Mat. Brescia 7 Vita e Pensiero Milan 125135.

    • Search Google Scholar
    • Export Citation
  • [12] Bonisoli, A. Korchmáros, G. 2002 Irreducible collineation groups fixing a hyperoval J. Algebra 252 431448 .

  • [13] Buekenhout, F. 1976 Existence of unitals in finite translation planes of order q2 with a kernel of order q Geom. Dedicata 5 189194 .

  • [14] Bumcrot, R. J. 1971 Finite hyperbolic spaces Atti del Convegno di Geometria Combinatoria e sue Applicazioni Univ. Perugia, Perugia 1970 Ist. Mat., Univ. Perugia Perugia 113130.

    • Search Google Scholar
    • Export Citation
  • [15] Cossidente, A. Ebert, G. L. Korchmáros, G. 2000 A group-theoretic characterization of classical unitals Arch. Math. (Basel) 74 15.

    • Search Google Scholar
    • Export Citation
  • [16] Cossidente, A. Ebert, G. L. Korchmáros, G. 2001 Unitals in finite Desarguesian planes J. Algebraic Combin. 14 119125 .

  • [17] Delandtsheer, A. Doyen, J. 1990 A classification of line-transitive maximal (v,k)-arcs in finite projective planes Arch. Math. (Basel) 55 187192.

    • Search Google Scholar
    • Export Citation
  • [18] Denniston, R. H. F. 1969 Some maximal arcs in finite projective planes J. Combinatorial Theory 6 317319 .

  • [19] Enea, M. R. Korchmáros, G. 1998 -transitive ovals in projective planes of odd order J. Algebra 208 604618 .

  • [20] Hamilton, N. Mathon, R. 2003 More maximal arcs in Desarguesian projective planes and their geometric structure Adv. Geom. 3 251261 .

  • [21] Hamilton, N. Mathon, R. 2004 On the spectrum of non-Denniston maximal arcs in  PG (2,2h) European J. Combin. 25 415421 .

  • [22] Hamilton, N. Penttila, T. 2001 Groups of maximal arcs J. Combin. Theory Ser. A 94 6386 .

  • [23] Hirschfeld, J. W. P. 1998 Projective Geometries over Finite Fields 2 Oxford Mathematical Monographs The Clarendon Press Oxford University Press New York.

    • Search Google Scholar
    • Export Citation
  • [24] Hirschfeld, J. W. P. Szőnyi, T. 1991 Sets in a finite plane with few intersection numbers and a distinguished point Discrete Math. 97 229242 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [25] Hughes, D. R. Piper, F. C. 1973 Projective Planes Graduate Texts in Mathematics 6 Springer-Verlag New York.

  • [26] Huppert, B. Blackburn, N. 1982 Finite Groups. III Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 243 Springer-Verlag Berlin .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [27] Kárteszi, F. 1970 A smallest finite regular hyperbolic plane Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 19 57.

  • [28] Kárteszi, F. 1976 Introduction to Finite Geometries North-Holland Publishing Co. Amsterdam Translated from the Hungarian by L. Vekerdi, North-Holland Texts in Advanced Mathematics, Vol. 2.

    • Search Google Scholar
    • Export Citation
  • [29] Kárteszi, F. Horváth, T. 1985 Einige Bemerkungen bezüglich der Struktur von endlichen Bolyai–Lobatschefsky Ebenen Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 28 263270 (1986).

    • Search Google Scholar
    • Export Citation
  • [30] Korchmáros, G. 1978 Collineation groups transitive on the points of an oval [(q+2)-arc] of S2,q for q even Atti Sem. Mat. Fis. Univ. Modena 27 89105 (1979).

    • Search Google Scholar
    • Export Citation
  • [31] Korchmáros, G. 1978 A group property of the plane involutions that permute into themselves an oval in a finite projected plane Ann. Mat. Pura Appl. 116 189205 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [32] Korchmáros, G. 1981 Collineation groups doubly transitive on the points at infinity in an affine plane of order 2r Arch. Math. (Basel) 37 572576.

    • Search Google Scholar
    • Export Citation
  • [33] Korchmáros, G. 1989 Cyclic one-factorization with an invariant one-factor of the complete graph Ars Combin. 27 133138.

  • [34] Korchmáros, G. 1990 Metodi di teoria dei gruppi nello studio del le ovali dei piani proiettivi finiti Rend. Sem. Mat. Fis. Milano 60 93111 . (1993).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [35] Korchmáros, G. 1991 Old and new results on ovals in finite projective planes Surveys in Combinatorics, 1991 Guildford 1991 London Math. Soc. Lecture Note Ser. 166 Cambridge Univ. Press Cambridge 4172.

    • Search Google Scholar
    • Export Citation
  • [36] Lüneburg, H. 1980 Translation Planes Springer-Verlag Berlin .

  • [37] Maschietti, A. 2006 Two-transitive ovals Adv. Geom. 6 323332 .

  • [38] Mathon, R. 2002 New maximal arcs in Desarguesian planes J. Combin. Theory Ser. A 97 353368 .

  • [39] Metz, R. 1979 On a class of unitals Geom. Dedicata 8 125126 .

  • [40] Ostrom, T. G. 1962 Ovals and finite Bolyai–Lobachevsky planes Amer. Math. Monthly 69 899901 .

  • [41] Prékopa, A. Molnár, E. (eds.) 2006 Non-Euclidean Geometries Mathematics and Its Applications 581 Springer New York János Bolyai memorial volume, Papers from the International Conference on Hyperbolic Geometry held in Budapest, July 6–12, 2002.

    • Search Google Scholar
    • Export Citation
  • [42] Segre, B. 1955 Ovals in a finite projective plane Canad. J. Math. 7 414416 .

  • [43] Thas, J. A. 1974 Construction of maximal arcs and partial geometries Geom. Dedicata 3 6164.

  • [44] Thas, J. A. 1980 Construction of maximal arcs and dual ovals in translation planes European J. Combin. 1 189192.

  • [45] Thas, J. A. 1992 A combinatorial characterization of Hermitian curves J. Algebraic Combin. 1 97102 .

  • [46] Valentini, R. C. Madan, M. L. 1980 A Hauptsatz of L. E. Dickson and Artin–Schreier extensions J. Reine Angew. Math. 318 156177.

    • Search Google Scholar
    • Export Citation

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0