Authors:
X. L. Shi College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, Chinae-mail: wwang.wei_011@yahoo.com.cn

Search for other papers by X. L. Shi in
Current site
Google Scholar
PubMed
Close
and
W. Wang College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, Chinae-mail: wwang.wei_011@yahoo.com.cn

Search for other papers by W. Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We prove that the conjugate convolution operators can be used to calculate jumps for functions. Our results generalize the theorems established by He and Shi. Furthermore, by using Lukács and Móricz's idea, we solve an open question posed by Shi and Hu.

  • [1] Chui, C. K. 1992 An Introduction to Wavelets Academic Press Boston.

  • [2] Daubechies, I. 1992 Ten Lectures on Wavelets CBMS-NSF Series in Applied Math 61 SIAM Philadephia .

  • [3] Fejér, L. 1913 Über die Bestimmung des Sprunges einer Funktion aus Ihrer Fourierreihe J. Reine Angew. Math. 142 165188 .

  • [4] Gelb, A. Tadmor, E. 1999 Detection of edges in spectral data Appl. Comput. Harmon. Anal. 7 101135 .

  • [5] Golubov, B. I. 1975 Determination of jump of function of bounded variation by its Fourier series Math. Notes 12 444449.

  • [6] He, Z. T. and Shi, X. L., Determination of jumps for functions via conjugate convolution operators, Acta Mat. Sci., to appear.

  • [7] Hu, L. Shi, X. L. 2007 Determination of jumps for functions with generalized bounded variation Acta Math. Hungar. 116 89103 .

  • [8] Kvernadge, G. 1998 Determination of jumps of a bounded function by its Fourier series J. Approx. Theory 92 167190 .

  • [9] Lukács, F. 1920 Über die Bestimmung des Sprunges einer Funktion aus ihrer Fourierrieihe J. Reine Angew. Math. 150 107112 .

  • [10] Móricz, F. 2003 Determination of jumps in terms of Abel–Poisson means Acta Math. Hungar. 98 259262 .

  • [11] Móricz, F. 2003 Ferenc Lukács type theorems in terms of the Abel–Poisson mean of conjugate series Proc. Amer. Math. Soc. 131 12431250 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [12] Shi, Q. L. Shi, X. L. 2006 Determination of jumps in terms of spectral data Acta Math. Hungar. 110 193206 .

  • [13] Shi, X. L. Hu, L. 2009 Determination of jumps for functions based on Malvar–Coifman–Meyer conjugate wavelets Science in China 52 443456 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [14] Shi, X. L. Zhang, H. Y. 2009 Determination of jumps via advanced concentration factors Appl. Comput. Harmon. Anal. 26 113 .

  • [15] Shi, X. L. Zhang, H. Y. 2010 Improvement of convergence rate for Móricz process Acta Sci. Math. (Szeged) 76 471486.

  • [16] Zhou, P. Zhou, S. P. 2008 More on determination of jumps Acta Math. Hungar. 118 4152 .

  • [17] Zhou, Y. Y. Shi, X. L. 2009 Determination of jumps for functions via derivative Gabor series Appl. Math. J. Chinese Univ. 24 191199 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 7 0 0
May 2024 82 0 0
Jun 2024 24 0 0
Jul 2024 6 0 0
Aug 2024 18 0 0
Sep 2024 6 0 0
Oct 2024 1 0 0