View More View Less
  • 1 Javakhishvili Tbilisi State University, 13, University St., Tbilisi 0143, Georgia
Restricted access

Abstract

A theorem of Ferenc Lukács [4] states that the partial sums of conjugate Fourier series of periodic Lebesgue integrable functions f diverge at logarithmic rate at the points of discontinuity of first kind of f. F. Móricz [5] proved an analogous theorem for the rectangular partial sums of bivariate functions. The present paper proves analogues of Móricz's theorem for generalized Cesàro means and for positive linear means.

  • [1] Akhobadze, T. 2004 On generalized Cesàro summability of trigonometric Fourier series Bull. Georgian Acad. Sci. 170 2324.

  • [2] Akhobadze, T. 2007 On the convergence of generalized Cesàro means of trigonometric Fourier series I Acta Math. Hungar. 115 5978 .

  • [3] Akhobadze, T. 2007 On the convergence of generalized Cesàro means of trigonometric Fourier series II Acta Math. Hungar. 115 79100 .

  • [4] Lukács, F. 1920 Über die Bestimmung des Sprunges einer Funktion aus ihrer Fourierreihe J. Reine Angew. Math. 150 107112 .

  • [5] Móricz, F. 2003 Determination of jumps in terms of Abel–Poisson means Acta Math. Hungar. 98 259262 .

  • [6] Móricz, F. 2001 Extension of a theorem of Ferenc Lukács from single to double conjugate series J. Math. Anal. Appl. 259 582595 .

  • [7] Móricz, F. Wade, W. R. 2002 An analogue of a theorem of Ferenc Lukács for double Walsh–Fourier series Acta Math. Hungar. 95 323336 .

  • [8] Riad, R. 1987 On the conjugate of the Walsh series Ann. Univ. Sci. Budapest. Rolando Eötvös, Sect. Math. 30 6976.

  • [9] Zygmund, A., Trigonometric Series, Cambridge University Press, Vol. 1 (1959).

  • [10] Zviadadze, Sh. 2005 On the statement of F. Lukács Bull. Georgian Acad. Sci. 171 411412.

  • [11] Zviadadze, Sh. 2006 On a Lukács theorem for regular linear means of conjugate trigonometric Fourier series Bull. Georgian Acad. Sci. 173 435438.

    • Search Google Scholar
    • Export Citation

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)