View More View Less
  • 1 Department of Mathematics, Vinh University, Nghe An Province, Viet Nam
Restricted access

Abstract.

Let be a convex combination space as defined by Terán and Molchanov [13]. By using their definition of mathematical expectation of an -valued random variable, we state several new variants of strong laws of large numbers for double arrays of integrable -valued random variables under various assumptions. Some related results in the literature are extended.

  • [1] Castaing, C. Valadier, M. 1977 Convex Analysis and Measurable Multifunctions Lecture Notes in Math. 580 Springer-Verlag Berlin and New York.

    • Search Google Scholar
    • Export Citation
  • [2] Csörgő, S. Tandori, K. Totik, V. 1983 On the strong law of large numbers for pairwise independent random variables Acta Math. Hungar. 42 319330 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [3] Cuesta, J. A. Matrán, C. 1988 Strong convergence of weighted sums of random elements through the equivalence of sequences of distributions J. Multivariate Analysis 25 311322 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [4] Etemadi, N. 1981 An elementary proof of the strong law of large numbers Z. Wahrscheinlichkeitstheorie Verw. Gebiete 55 119122 .

  • [5] Etemadi, N. 1983 On the laws of large numbers for nonnegative random variables J. Multivariate Analysis 13 187193 .

  • [6] Herer, W. 1991 Mathematical expectation and martingales of random subsets of a metric space Probability and Math. Statistics 11 291304.

    • Search Google Scholar
    • Export Citation
  • [7] Herer, W. 1992 Mathematical expectation and strong law of large numbers for random variables with values in a metric space of negative curvature Probability and Math. Statistics 13 5970.

    • Search Google Scholar
    • Export Citation
  • [8] Herer, W. 1997 Martingales of random subsets of a metric space of negative curvature Set-Valued Analysis 5 147157 .

  • [9] Molchanov, I. 2005 Theory of Random Sets Springer London.

  • [10] Fitte de, P. R. 1997 Théorème ergodique ponctuel et lois fortes des grands nombres pour des points aléatoires d'un espace métrique à courbure négative Annals of Probability 25 738766 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [11] Sturm, K. T. 2002 Nonlinear martingale theory for processes with values in metric spaces of nonpositive curvature Annals of Probability 30 11951222 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [12] Taylor, R. L. Inoue, H. 1985 A strong law of large numbers for random sets in Banach space Bull. Inst. Math. Acad. Sinica 13 403409.

    • Search Google Scholar
    • Export Citation
  • [13] Terán, P. Molchanov, I. 2006 The law of large numbers in a metric space with a convex combination operation J. Theoretical Probability 19 875898 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [14] Terán, P. Molchanov, I. 2006 A general law of large numbers, with applications Advances in Soft Computing 6 153160 .

  • [15] Thanh, L. V. 2005 Strong law of large numbers and -convergence for double arrays of independent random variables Acta Math. Vietnamica 30 225232.

    • Search Google Scholar
    • Export Citation