T ∗ T is selfadjoint if T is a densely defined closed Hilbert space operator. This result of von Neumann can be generalized for not necessarily closed operators: T∗T always admits a positive selfadjoint extension. The Friedrichs extension also will be obtained whenever T∗T is assumed to be densely defined. Selfadjointness of T∗T will be investigated. Densely defined positive operators and their Friedrichs extension A and AF, respectively, will be described by showing the existence of a closable operator T such that A=T∗T and at the same time AF=T∗T∗∗.
[1] Ando, T. Nishio, K. 1970 Positive selfadjoint extensions of positive symmetric operators Tôhoku Math. J. 22 65–75 .
[2] Arens, R. 1961 Operational calculus of linear relations Pacific J. Math. 11 9–23.
[3] Friedrichs, K. 1934 Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren Math. Ann. 109 465–487 .
[4] Kato, T. 1976 Perturbation Theory for Linear Operators 2 Grundlehren der Mathematischen Wissenschaften 132 Springer-Verlag Berlin .
[5] Koshmanenko, V. D. Ôta, S. 1996 On the characteristic properties of singular operators Ukraïn. Mat. Zh. 48 1484–1493.
[6] Krein, M. 1947 The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I Math. Sbornik N.S. 20 431–495.
[7] Krein, M. 1947 The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. II Math. Sbornik N.S. 21 365–404.
[8] Neumann von, J. 1932 Über adjungierte Funktionaloperatoren Annals of Math. 33 294–310 .
[9] Ôta, S. 1988 On a singular part of an unbounded operator Z. Anal. Anwendungen 7 15–18.
[10] Prokaj, V. Sebestyén, Z. 1996 On Friedrichs extensions of operators Acta Sci. Math. (Szeged) 62 243–246.
[11] Prokaj, V. Sebestyén, Z. 1996 On extremal positive operator extensions Acta Sci. Math. (Szeged) 62 485–491.
[12] Sebestyén, Z. 1983 On ranges of adjoint operators in Hilbert space Acta Sci. Math. (Szeged) 46 295–298.
[13] Sebestyén, Z. 1983 Restrictions of positive operators Acta Sci. Math. (Szeged) 46 299–301.
[14] Sebestyén, Z. 1993 Operator extensions on Hilbert space Acta Sci. Math. (Szeged) 57 233–248.
[15] Sebestyén, Z. Sikolya, E. 2003 On Krein–von Neumann and Friedrichs extensions Acta Sci. Math. (Szeged) 69 323–336.
[16] Sebestyén, Z. Stochel, J. 1991 Restrictions of positive selfadjoint operators Acta Sci. Math. (Szeged) 55 149–154.
[17] Sebestyén, Z. Stochel, J. 2003 On products of unbounded operators Acta Math. Hungar. 100 105–129 .
[18] Sebestyén, Z. Stochel, J. 2009 On suboperators with codimension one domains J. Math. Analysis and Appl. 360 391–397 .