We prove some new direct and converse results on simultaneous approximation by the combinations of Bernstein–Kantorovich operators using the Ditzian–Totik modulus of smoothness.
[1] Ditzian, Z. 1994 Direct estimate for Bernstein polynomials J. Approx. Theory 79 165–166 .
[2] Ditzian, Z. 1979 A global inverse theorem for combinations of Bernstein polynomials J. Approx. Theory 26 277–292 .
[3] Ditzian, Z. Jiang, D. 1992 Approximation of functions by polynomials in C[−1,1] Canad. J. Math. 44 924–940 .
[4] Ditzian, Z. Jiang, D. Leviatan, D. 1993 Simultaneous polynomial approximation SIAM J. Math. Anal. 24 1652–1661 .
[5] Ditzian, Z. Totik, V. 1987 Moduli of Smoothness Springer-Verlag New York .
[6] Guo, S. S. Li, C. X. Liu, X. W. Song, Z. J. 2000 Pointwise approximation for linear combinations of Bernstein operators J. Approx. Theory 107 109–120 .
[7] Guo, S. S. Liu, L. X. Qi, Q. L. 2002 Pointwise estimate for linear combinations of Bernstein–Kantorovich operators J. Math. Anal. Appl. 265 135–147 .
[8] Guo, S. S. Li, C. X. Sun, Y. G. Yang, G. Yue, S. J. 1998 Pointwise estimate for Szász-type operators J. Approx. Theory 94 160–171 .
[9] Xie, L. S. Xie, T. F. 1999 A pointwise inverse theorem for combination of Bernstein polynomials Chinese J. Contemporary Math. 20 373–386.
[10] Zhou, D. X. 1995 On smoothness characterized by Bernstein type operators J. Approx. Theory 81 303–315 .