View More View Less
  • 1 Department of Mathematics, Shandong University, Jinan Shandong 250100, China
Restricted access

Abstract

We study two general divisor problems related to Hecke eigenvalues of classical holomorphic cusp forms, which have been considered by Fomenko, and by Kanemitsu, Sankaranarayanan and Tanigawa respectively. We improve previous results.

  • [1] Barthel, L. Ramakrishnan, D. 1994 A nonvanishing result for twists of L-functions of GL(n) Duke Math. J. 74 681700 .

  • [2] Chandrasekharan, K. Narasimhan, R. 1962 Functional equations with multiple gamma factors and the average order of arithmetical functions Ann. of Math. 76 93136 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [3] Deligne, P. 1974 La conjecture de Weil Inst. Hautes Etudes Sci. Pul. Math. 43 2939.

  • [4] Fomenko, O. M. 1999 Mean value theorems for a class of Dirichlet series J. Math. Sci. (New York) 157 659672.

  • [5] Gelbart, S. Jacquet, H. 1978 A relation between automorphic representations of GL(2) and GL(3) Ann. Sci. École Norm. Sup. 11 471542.

    • Search Google Scholar
    • Export Citation
  • [6] Good, A. 1982 The square mean of Dirichlet series associated with cusp forms Mathematika 29 278295 .

  • [7] Hafner, J. L. Ivić, A. 1989 On sums of Fourier coefficients of cusp forms L'Enseignement Mathématique 35 375382.

  • [8] Heath-Brown, D. R. 1978 The twelfth power moment of the Riemann zeta-function Q. J. Math. 29 443462 .

  • [9] Ivić, A. 1985 The Riemann Zeta-function John Wiley & Sons New York.

  • [10] Ivić, A., On zeta-functions associated with Fourier coefficients of cusp forms, in: Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Univ. Salerno (Salerno, 1992), pp. 231246.

    • Search Google Scholar
    • Export Citation
  • [11] Iwaniec, H. Kowalski, E. 2004 Analytic Number Theory Amer. Math. Soc. Colloquium Publ. 53 Amer. Math. Soc. Providence.

  • [12] Jutila, M., Lectures on a Method in the Theory of Exponential Sums, Tata Inst. Fundam. Res. Lect. Math. and Physics 80, Springer (1987).

    • Search Google Scholar
    • Export Citation
  • [13] Kanemitsu, S. Sankaranarayanan, A. Tanigawa, Y. 2002 A mean value theorem for Dirichlet series and a general divisor problem Monatsh. Math. 136 1734 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [14] Li, X. 2011 Bounds for GL (3)×GL (2) L-functions and GL (3) L-functions Ann. of Math. 173 301336 .

  • [15] Pan, C. D. and Pan, C. B., Fundamentals of Analytic Number Theory, Science Press, 1991 (in Chinese).

  • [16] Rankin, R. A. 1939 Contributions to the theory of Ramanujan's function τ(n) and similar arithemtical functions II. The order of the Fourier coefficients of the integral modular forms Proc. Cambridge Phil. Soc. 35 357372 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [17] Rankin, R. A. 1990 Sums of cusp form coefficients Automorphic Forms and Analytic Number Theory Montreal, PQ 1989 Univ. Montreal Montreal 115121.

    • Search Google Scholar
    • Export Citation
  • [18] Selberg, A. 1940 Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist Arch. Math. Naturvid. 43 4750.

    • Search Google Scholar
    • Export Citation
  • [19] Wu, J. 2009 Power sums of Hecke eigenvalues and application Acta Arith. 137 333344 .

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0
Nov 2021 1 0 0
Dec 2021 0 0 0