Authors:
M. Asaad Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt

Search for other papers by M. Asaad in
Current site
Google Scholar
PubMed
Close
and
V. S. Monakhov Department of Mathematics, Francisk Skorina, Gomel State University, Gomel 246019, Belaruse-mail: Victor.Monakhov@gmail.com

Search for other papers by V. S. Monakhov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper represents an attempt to extend and improve the following result of Berkovich: Let G be a group of odd order. Let G=G1G2 such that G1 and G2 are subgroups of G. If the Sylow p-subgroups of G1 and of G2 are cyclic, then G is p-supersolvable.

  • [1] Asaad, M. 2010 A condition for the supersolvability of finite groups Comm. Algebra 38 36163620 .

  • [2] Ballester-Bolinches, A. Cossey, J. Pedraza-Aguilera, M. C. 2001 On products of finite supersolvable groups Comm. Algebra 29 31453152.

    • Search Google Scholar
    • Export Citation
  • [3] Berkovich, Y. 1967 On solvable groups of the finite order Mat. Sb. (N.S.) 74 116 7592.

  • [4] Csörgő, P. 2001 On supersolvability of finite groups Glasgow Math. J. 43 327333.

  • [5] Feit, W. Thompson, J. G. 1963 Solvability of groups of odd order Pacific J. Math. 13 7731029.

  • [6] Huppert, B. 1967 Endliche Gruppen I Springer-Verlag Berlin/New York .

  • [7] Monakhov, V. S., On the product of two groups with cyclic subgroups of index 2, Izv. Akad. Nauk. Belarusi, Ser. Fiz.-Mat. Nauk, (1996), 2124.

    • Search Google Scholar
    • Export Citation
  • [8] Weinstein, M. (eds.) 1982 Between Nilpotent and Solvable Polygonal Publishing House Passaic.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 9 0 0
May 2024 34 0 0
Jun 2024 40 0 0
Jul 2024 10 0 0
Aug 2024 15 0 0
Sep 2024 42 1 0
Oct 2024 0 0 0