Authors:
Vilmos Komornik Département de mathématique, Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg Cedex, France

Search for other papers by Vilmos Komornik in
Current site
Google Scholar
PubMed
Close
,
Zsolt Komornik UFR de mathématique et d'informatique, Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg Cedex, France

Search for other papers by Zsolt Komornik in
Current site
Google Scholar
PubMed
Close
, and
Christelle K. Viauroux Department of Economics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore MD 21250, USA

Search for other papers by Christelle K. Viauroux in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract.

In order to treat a natural schedule matching problem related with worker-firm matchings, we generalize some theorems of Baiou–Balinski and Alkan–Gale by applying a fixed point method of Fleiner.

  • [1] Adachi, H. 2000 On a characterization of stable matchings Econom. Lett. 68 4349 .

  • [2] Alkan, A. Gale, D. 2003 Stable schedule matching under revealed preference J. Economic Theory 112 289306 .

  • [3] Baiou, M. Balinski, M. 2002 The stable allocation (or ordinal transportation) problem Math. Oper. Res. 27 485503 .

  • [4] Blair, C. 1988 The lattice structure of the set of stable matchings with multiple partners Mathematics of Operations Research 13 619628 .

  • [5] Kelso, A. S. Jr. Crawford, V. P. 1982 Job matching, coalition formation, and gross substitutes Econometrica 50 14831504 .

  • [6] Echenique, F. Ovideo, J. 2004 Core many-to-one matchings by fixed-point methods Journal of Economic Theory 115 358376 .

  • [7] Echenique, F. Ovideo, J. 2006 A theory of stability in many-to-many matching markets Theoretical Economics 1 233273.

  • [8] Feder, T. 1992 A new fixed point approach for stable networks and stable marriages J. Comput. System Sci. 45 233284 . in: Twenty-First Symposium on the Theory of Computing (Seattle, WA, 1989).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [9] Fleiner, T. 2001 A matroid generalization of the stable matching polytope Integer Programming and Combinatorial Optimization Utrecht 2001 Lecture Notes in Comput. Sci. 2081 Springer Berlin 105114 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [10] Fleiner, T. 2008 Stable matchings through fixed points and graphs Ann. Univ. Sci. Budapest. Eötvös, Sect. Math. 51 69116 (2009).

    • Search Google Scholar
    • Export Citation
  • [11] Fleiner, T. 2003 A fixed-point approach to stable matchings and some applications Math. Oper. Res. 28 103126 .

  • [12] Gale, D. Shapley, L. S. 1962 College admissions and the stability of marriage Amer. Math. Monthly 69 915 .

  • [13] Hatfield, J. W. Milgrom, P. 2005 Matching with contracts American Economic Review 95 4 913935 .

  • [14] Klaus, B. Walzl, M. 2009 Stable many-to-many matchings with contracts Mathematics of Operations Research 45 422434.

  • [15] Knaster, B. 1928 Un théorème sur les fonctions d'ensembles Ann. Soc. Polon. Math. 6 133134.

  • [16] Roth, A. E. 1984 Stability and polarization of interests in job matching Econometrica 52 1 4757 .

  • [17] Roth, A. E. Sotomayor, M. 1990 Two-Sided Matching. A Study in Game-Theoretic Modeling and Analysis Econometric Society Monographs 18 Cambridge University Press Cambridge.

    • Search Google Scholar
    • Export Citation
  • [18] Subramanian, A. 1994 A new approach to stable matching problems SIAM J. Comput. 23 4 671700 .

  • [19] Tarski, A. 1928 Quelques théorèmes généraux sur les images d'ensembles Ann. Soc. Polon. Math. 6 132133.

  • [20] Tarski, A. 1955 A lattice-theoretical fixpoint theorem and its applications Pacific J. Math. 5 285310.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2023 1 0 0
Dec 2023 10 2 1
Jan 2024 22 3 0
Feb 2024 3 0 0
Mar 2024 1 0 0
Apr 2024 1 0 0
May 2024 0 0 0