View More View Less
  • 1 Dipartimento di Matematica, Istituto G. Castelnuovo, Università di Roma “La Sapienza”, P.le Aldo Moro 2, I-00185 Roma, Italy
  • | 2 Istituto per le Applicazioni del Calcolo “Mauro Picone”, CNR - Sezione di Napoli, Via P. Castellino 111, I-80131 Napoli, Italy
  • | 3 Dipartimento di Matematica, Università della Basilicata, Località Macchia Romana, I-85100 Potenza, Italy
  • | 4 Department of Numerical Analysis, Eötvös Loránd University, Budapest, Pázmány P. sétány I/C, H-1117, Hungary
  • | 5 Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Reáltanoda u. 13–15, H-1053, Hungary
Restricted access

Abstract

This paper generalizes some results of L. B. Golinskii [4] on the asymptotic behaviour of reflection coefficients associated with generalized Jacobi weight functions.

  • [1] Badkov, V. M. 1987 On orthogonal polynomials, which are explicitly expressed in terms of Jacobi polynomials Mat. Zametki 42 650659.

    • Search Google Scholar
    • Export Citation
  • [2] Badkov, V. M. 1994 Asymptotic and extremal properties of orthogonal polynomials in the presence of singularities in the weight Proc. Steklov Inst. Math. 1 3782 A translation of Trudy Mat. Inst. Steklov., 198 (1992).

    • Search Google Scholar
    • Export Citation
  • [3] Conway, J. B. 1973 Functions of One Complex Variable I 2 Springer-Verlag New York .

  • [4] Dzyadik, V. K. 1997 Introduction to Theory of Uniform Approximations of Functions by Polynomials Nauka Moscow in Russian.

  • [5] Golinskii, L. B. 1994 Reflection coefficients for the generalized Jacobi weight functions J. Approx. Theory 78 117126 .

  • [6] Geronimus, Y. L. 1960 Polynomials Orthogonal on Circle and Interval Pergamon Press Oxford–London–New York–Paris.

  • [7] Mastroianni, G. Vértesi, P. 1997 Some applications of generalized Jacobi weights Acta Math. Hungar. 77 323357 .

  • [8] Nevai, P. Totik, V. 1989 Orthogonal polynomials and their zeros Acta Sci. Math. (Szeged) 53 99104.

  • [9] Simon, B. 2005 Orthogonal Polynomials on the Unit Circle AMS Coll. Publ. 54 Providence.

  • [10] Szegö, G. 1978 Orthogonal Polynomials AMS Coll. Publ 23 Providence.

  • [11] Timan, A. F., Approximation Theory of Functions of Real Variables (Moscow, 1960) (in Russian).

  • [12] Zygmund, A. 1977 Trigonometric Series 1 Cambridge University Press Cambridge.

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0