View More View Less
  • 1 College of Mathematics and Computer Science, Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education), Hunan Normal University, Changsha, Hunan, P. R. China
Restricted access

Abstract

The generalized Christoffel function λp,q,n(;x) (0<p<∞, 0≦q<∞) with respect to a measure on R is defined by
ea
.

The novelty of our definition is that it contains the factor |tx|q, which is of particular interest. Its properties are discussed and estimates are given. In particular, upper and lower bounds for generalized Christoffel functions with respect to generalized Jacobi weights are also provided.

  • [1] Bojanov, B. D. 1982 Oscillating polynomials of least L1-norm Hammerlin, G. (eds.) Numerical Integration ISNM 57 Birkhäuser Basel 2533.

    • Search Google Scholar
    • Export Citation
  • [2] Erdélyi, T. Magnus, A. P. Nevai, P. 1994 Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials SIAM J. Math. Anal. 25 602614 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [3] Erdélyi, T. Nevai, P. 1992 Generalized Jacobi weights, Christoffel functions, and zeros of orthogonal polynomials J. Approx. Theory 69 111132 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [4] Hardy, G. H. Littlewood, J. E. Pólya, G. 1952 Inequalities Cambridge.

  • [5] Freud, G. 1971 Orthogonal Polynomials Pergamon Oxford Akad. Kiadó, Budapest.

  • [6] Mastroianni, G. Totik, V. 2000 Weighted polynomial inequalities with doubling and A weights Constr. Approx. 16 3771 .

  • [7] Mastroianni, G. Vértesi, P. 1997 Some applications of generalized Jacobi weights Acta Math. Hungar. 77 323357 .

  • [8] Nevai, P. 1979 Orthogonal Polynomials Memoirs of the Amer. Math. Soc. 213 Amer. Math. Soc. Providence, RI.

  • [9] Shi, Y. G. 2003 Lm extremal polynomials associated with generalized Jacobi weights Acta Math. Appl. Sinica, English Series 19 205218 .

  • [10] Shi, Y. G. 2005 Christoffel type functions for m-orthogonal polynomials J. Approx. Theory 137 5788 .

  • [11] Shi, Y. G. 2006 Power Orthogonal Polynomials Nova Science Publishers, Inc. New York.

  • [12] Shi, Y. G. 2007 Christoffel-type functions for m-orthogonal polynomials for Freud weights J. Approx. Theory 144 247259 .

  • [13] Singer, I. 1970 Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces Springer-Verlag Berlin.

  • [14] Stein, E. M. 1993 Harmonic Analysis: Real Variable Methods, Orthogonality and Singular Integrals Princeton University Press Princeton.

    • Search Google Scholar
    • Export Citation
  • [15] Szegő, G. 1959 Orthogonal Polynomials Amer. Math. Soc. Colloq. Publ. 23 Amer. Math. Soc. Providence, RI.

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 2 0 0
Oct 2021 2 0 0
Nov 2021 1 0 0
Dec 2021 0 0 0