View More View Less
  • 1 Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowsa 87, 61-614 Poznań, Poland
Restricted access

Abstract

We prove two results concerning solvability of a linear equation in sets of integers. In particular, it is shown that for every k∊ℕ, there is a noninvariant linear equation in k variables such that if A⫅{1,…,N} has no solution to the equation then , for some absolute constant c>0, provided that N is large enough.

  • [1] Chang, M.-C. 2002 Polynomial bounds in Freiman's theorem Duke Math. J. 113 399419 .

  • [2] Roth, K. F. 1953 On certain sets of integers J. London Math. Soc. 28 104109 .

  • [3] Ruzsa, I. Z. 1993 Solving linear equations in sets of integers. I Acta Arith. 65 259282.

  • [4] Ruzsa, I. Z. 1995 Solving linear equations in sets of integers. II Acta Arith. 72 385397.

  • [5] Schoen, T. 2005 Linear equations in ℤp Bull. London Math. Soc. 37 495501 .

  • [6] Szemerédi, E. 1975 On sets of integers containing no k elements in arithmetic progression Acta Arth. 27 199245.

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 1 0 0
Oct 2021 0 0 0
Nov 2021 0 0 0