Author:
Katarzyna Klimczak Faculty of Mathematics and Computer Science, University of Łódź, ul. Banacha 22, 90-238 Łódź, Poland

Search for other papers by Katarzyna Klimczak in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this note noncommutative versions of Etemadi's SLLN and Petrov's SLLN are given. As a noncommutative counterpart of the classical almost sure convergence, the almost uniform convergence of measurable operators is used.

  • [1] Batty, C. J. K. 1979 The strong law of large numbers for states and traces of a W*-algebra Z. Wahrsch. Verw. Gebiete 48 177191 .

  • [2] Etemadi, N. 1981 An elementary proof of the strong law of large numbers Z. Wahrsch. Verw. Gebiete 55 119122 .

  • [3] Jajte, R. 1985 Strong Limit Theorems in Non-commutative Probability Lect. Notes in Math. 1110 Springer Berlin–Heidelberg–New York.

    • Search Google Scholar
    • Export Citation
  • [4] Łuczak, A. 1985 Laws of large numbers in von Neumann algebras and related results Studia Math. 81 231243.

  • [5] Nelson, E. 1974 Notes on non-commutative integration J.  Funct.  Anal. 15 103116 .

  • [6] Petrov, V. V. 1972 Sums of Independent Random Variables Nauka Moscow (in Russian).

  • [7] Segal, I. E. 1953 A non-commutative extension of abstract integration Ann. of Math. 57 401457 .

  • [8] Yeadon, F. J. 1975 Non-commutative LP-spaces Math. Proc. Cambridge Philos. Soc. 77 91102 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 29 0 0
Jan 2024 47 1 2
Feb 2024 9 0 1
Mar 2024 8 0 0
Apr 2024 17 0 0
May 2024 43 0 0
Jun 2024 0 0 0