Author:
Y. C. Wang School of Mathematics, Shandong University, Jinan Shandong 250100, China

Search for other papers by Y. C. Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Let denote the set {n∣2|n, ∀ p>2 with p−1|k}. We prove that when , almost all integers can be represented as the sum of a prime and a k-th power of prime for k≧3. Moreover, when , almost all integers n∊(X,X+H] can be represented as the sum of a prime and a k-th power of integer for k≧3.

  • [1] Baker, R. C. Harman, G. Pintz, J. 1997 The exceptional set for Goldbach's problem in short intervals Sieve Methods, Exponential Sums and their Applications in Number Theory 154 . Cambridge University Press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [2] Bauer, C. 1998 On the sum of a prime and the k-th power of a prime Acta Arith. 85 99118.

  • [3] Gallagher, P. X. 1970 A large sieve density estimate near σ=1 Invent. Math. 11 329339 .

  • [4] Hua, L. K. 1938 Some results in prime number theory Q.J. Math. 9 6880 .

  • [5] Jia, C. H. 1995 Goldbach numbers in a short interval (I) Sci. China Ser. A 38 385406.

  • [6] Jia, C. H. 1995 Goldbach numbers in a short interval (II) Sci. China Ser. A 38 513523.

  • [7] Jia, C. H. 1996 On the exceptional set of Goldbach numbers in a short interval Acta Arith. 77 207287.

  • [8] Kumchev, A. V. 2006 On Weyl sums over primes and almost primes Michigan Math. J. 54 243268 .

  • [9] Kumchev, A. V. Liu, J. Y. 2009 Sums of primes and squares of primes in short intervals Monatsh. Math. 157 335363 .

  • [10] Li, H. Z. 1995 Goldbach numbers in a short interval Sci. China Ser. A 38 641652.

  • [11] Liu, J. Y. Zhan, T. 1997 On a theorem of Hua Arch. Math. (Basel) 69 375390 .

  • [12] Mikawa, H. 1992 On the exceptional set in Goldbach's problem Tsukuba J. Math. 16 513543.

  • [13] Perelli, A. Pintz, J. 1993 On the exceptional set for Goldbach's problem in short intervals J. London Math. Soc. 47 4149 .

  • [14] Perelli, A. Zaccagnini, A. 1995 On the sum of a prime and a k-th power Izv. Ross. Akad. Nauk Mat. 59 185200.

  • [15] Ramachandra, K. 1973 On the number of Goldbach numbers in small intervals J. Indian Math. Soc. 37 157170.

  • [16] Saffari, B. Vaughan, R. C. 1977 On the fractional parts of x/n and related sequences. II Ann. Inst. Fourier (Grenoble) 27 130 .

  • [17] Schwarz, W. 1961 Zur Darstellung von Zahlen durch Summen von Primzahlpotenzen. II J. Reine Angew. Math. 206 78112.

  • [18] Titchmarsh, E. C. 1986 The Theory of the Riemann Zeta-Function 2 Clarendon Press Oxford.

  • [19] Zaccagnini, A. 1992 The exceptional set for the sum of a prime and a k-th power Mathematika 39 400421 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 24 1 0
Jan 2024 44 1 0
Feb 2024 10 0 0
Mar 2024 1 1 0
Apr 2024 8 0 0
May 2024 58 0 0
Jun 2024 0 0 0