We give a constructive proof of existence of random vectors and discrete-time random processes with arbitrary nonsingular marginal distributions and arbitrary dependence structure. A corollary of this fact regarding Gaussian distributions is also established, as well as some abstract properties of dependence structures.
[1] Alon, N. Goldreich, O. Håstad, J. Peralta, R. 1992 Simple constructions of almost k-wise independent random variables Random Structures Algorithms 3 289–304 .
[2] Alon, N. Babai, L. Itai, A. 1986 A fast and simple randomized parallel algorithm for the maximal independent set problem J. Algorithms 7 567–583 .
[3] Billingsley, P. 1985 Probability and Measure 3 John Wiley & Sons New York.
[4] Cuadras, C. M. 1992 Probability distributions with given multivariate marginals and given dependence structure J. Multivariate Anal. 42 51–66 .
[5] Joffe, A. 1971 On a sequence of almost deterministic pairwise independent random variables Proc. Amer. Math. Soc. 29 381–382 .
[6] Joffe, A. 1974 On a set of almost deterministic k-independent random variables Ann. Probab. 2 161–162 .
[7] Karp, R. Wigderson, A. 1985 A fast parallel algorithm for the maximal independent set problem J. of the Association for Computing Machinery 32 762–773 .
[8] Kurosawa, K. Johansson, T. Stinson, D. R. 2001 Almost k-wise independent sample spaces and their cryptologic applications J. Cryptology 14 231–253.
[9] Luby, M. 1986 A simple parallel algorithm for the maximal independent set problem SIAM J. Comput. 15 1036–1053 .
[10] Luby, M. Wigderson, A. 2006 Pairwise independence and derandomization Found. Trends Theor. Comput. Sci. 1 237–301 .
[11] Oxley, J. 1992 Matroid Theory Oxford Science Publications, The Clarendon Press, Oxford University Press New York.
[12] Papoulis, A. 1984 Probability, Random Variables, and Stochastic Processes 2 McGraw-Hill Series in Electrical Engineering, Communications and Information Theory McGraw-Hill Book Co. New York.
[13] Stoyanov, J. 1987 Counterexamples in Probability Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics John Wiley & Sons Chichester.
[14] Stoyanov, J. 2003 Sets of binary random variables with a prescribed independence/dependence structure Math. Sci. 28 19–27.
[15] Wang, Y. H. 1979 Dependent random variables with independent subsets Amer. Math. Monthly 86 290–292 .
[16] Wang, Y. H. 1990 Dependent random variables with independent subsets II Canad. Math. Bull. 33 24–28 .
[17] Wang, Y. H. Stoyanov, J. Shao, Q. M. 1993 On independence and dependence properties of a set of random events Amer. Statist. 47 112–115 .