View More View Less
  • 1 Department of Electrical Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
Restricted access

Abstract

We give a constructive proof of existence of random vectors and discrete-time random processes with arbitrary nonsingular marginal distributions and arbitrary dependence structure. A corollary of this fact regarding Gaussian distributions is also established, as well as some abstract properties of dependence structures.

  • [1] Alon, N. Goldreich, O. Håstad, J. Peralta, R. 1992 Simple constructions of almost k-wise independent random variables Random Structures Algorithms 3 289304 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [2] Alon, N. Babai, L. Itai, A. 1986 A fast and simple randomized parallel algorithm for the maximal independent set problem J. Algorithms 7 567583 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [3] Billingsley, P. 1985 Probability and Measure 3 John Wiley & Sons New York.

  • [4] Cuadras, C. M. 1992 Probability distributions with given multivariate marginals and given dependence structure J. Multivariate Anal. 42 5166 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [5] Joffe, A. 1971 On a sequence of almost deterministic pairwise independent random variables Proc. Amer. Math. Soc. 29 381382 .

  • [6] Joffe, A. 1974 On a set of almost deterministic k-independent random variables Ann. Probab. 2 161162 .

  • [7] Karp, R. Wigderson, A. 1985 A fast parallel algorithm for the maximal independent set problem J. of the Association for Computing Machinery 32 762773 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [8] Kurosawa, K. Johansson, T. Stinson, D. R. 2001 Almost k-wise independent sample spaces and their cryptologic applications J. Cryptology 14 231253.

    • Search Google Scholar
    • Export Citation
  • [9] Luby, M. 1986 A simple parallel algorithm for the maximal independent set problem SIAM J. Comput. 15 10361053 .

  • [10] Luby, M. Wigderson, A. 2006 Pairwise independence and derandomization Found. Trends Theor. Comput. Sci. 1 237301 .

  • [11] Oxley, J. 1992 Matroid Theory Oxford Science Publications, The Clarendon Press, Oxford University Press New York.

  • [12] Papoulis, A. 1984 Probability, Random Variables, and Stochastic Processes 2 McGraw-Hill Series in Electrical Engineering, Communications and Information Theory McGraw-Hill Book Co. New York.

    • Search Google Scholar
    • Export Citation
  • [13] Stoyanov, J. 1987 Counterexamples in Probability Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics John Wiley & Sons Chichester.

    • Search Google Scholar
    • Export Citation
  • [14] Stoyanov, J. 2003 Sets of binary random variables with a prescribed independence/dependence structure Math. Sci. 28 1927.

  • [15] Wang, Y. H. 1979 Dependent random variables with independent subsets Amer. Math. Monthly 86 290292 .

  • [16] Wang, Y. H. 1990 Dependent random variables with independent subsets II Canad. Math. Bull. 33 2428 .

  • [17] Wang, Y. H. Stoyanov, J. Shao, Q. M. 1993 On independence and dependence properties of a set of random events Amer. Statist. 47 112115 .

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 1 0 0
Nov 2021 0 0 0