Authors:
Mladen Kovačević Department of Electrical Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbiae-mail: vojin_senk@uns.ac.rs

Search for other papers by Mladen Kovačević in
Current site
Google Scholar
PubMed
Close
and
Vojin Šenk Department of Electrical Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbiae-mail: vojin_senk@uns.ac.rs

Search for other papers by Vojin Šenk in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We give a constructive proof of existence of random vectors and discrete-time random processes with arbitrary nonsingular marginal distributions and arbitrary dependence structure. A corollary of this fact regarding Gaussian distributions is also established, as well as some abstract properties of dependence structures.

  • [1] Alon, N. Goldreich, O. Håstad, J. Peralta, R. 1992 Simple constructions of almost k-wise independent random variables Random Structures Algorithms 3 289304 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [2] Alon, N. Babai, L. Itai, A. 1986 A fast and simple randomized parallel algorithm for the maximal independent set problem J. Algorithms 7 567583 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [3] Billingsley, P. 1985 Probability and Measure 3 John Wiley & Sons New York.

  • [4] Cuadras, C. M. 1992 Probability distributions with given multivariate marginals and given dependence structure J. Multivariate Anal. 42 5166 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [5] Joffe, A. 1971 On a sequence of almost deterministic pairwise independent random variables Proc. Amer. Math. Soc. 29 381382 .

  • [6] Joffe, A. 1974 On a set of almost deterministic k-independent random variables Ann. Probab. 2 161162 .

  • [7] Karp, R. Wigderson, A. 1985 A fast parallel algorithm for the maximal independent set problem J. of the Association for Computing Machinery 32 762773 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [8] Kurosawa, K. Johansson, T. Stinson, D. R. 2001 Almost k-wise independent sample spaces and their cryptologic applications J. Cryptology 14 231253.

    • Search Google Scholar
    • Export Citation
  • [9] Luby, M. 1986 A simple parallel algorithm for the maximal independent set problem SIAM J. Comput. 15 10361053 .

  • [10] Luby, M. Wigderson, A. 2006 Pairwise independence and derandomization Found. Trends Theor. Comput. Sci. 1 237301 .

  • [11] Oxley, J. 1992 Matroid Theory Oxford Science Publications, The Clarendon Press, Oxford University Press New York.

  • [12] Papoulis, A. 1984 Probability, Random Variables, and Stochastic Processes 2 McGraw-Hill Series in Electrical Engineering, Communications and Information Theory McGraw-Hill Book Co. New York.

    • Search Google Scholar
    • Export Citation
  • [13] Stoyanov, J. 1987 Counterexamples in Probability Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics John Wiley & Sons Chichester.

    • Search Google Scholar
    • Export Citation
  • [14] Stoyanov, J. 2003 Sets of binary random variables with a prescribed independence/dependence structure Math. Sci. 28 1927.

  • [15] Wang, Y. H. 1979 Dependent random variables with independent subsets Amer. Math. Monthly 86 290292 .

  • [16] Wang, Y. H. 1990 Dependent random variables with independent subsets II Canad. Math. Bull. 33 2428 .

  • [17] Wang, Y. H. Stoyanov, J. Shao, Q. M. 1993 On independence and dependence properties of a set of random events Amer. Statist. 47 112115 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2024 6 0 0
Jan 2025 8 0 0
Feb 2025 8 0 0
Mar 2025 15 0 0
Apr 2025 14 0 0
May 2025 2 0 0
Jun 2025 0 0 0