View More View Less
  • 1 A. Rényi Institute of Mathematics, Hungarian Academy of Sciences, 1053 Budapest, Reáltanoda u. 13–15, Hungary
Restricted access

Abstract

We prove that a relatively general even function f(x) (satisfying a vanishing condition, and also some analyticity and growth conditions) on the real line can be expanded in terms of a certain function series closely related to the Wilson functions introduced by Groenevelt in 2003. The coefficients in the expansion of f will be inner products in a suitable Hilbert space of f and some polynomials closely related to Wilson polynomials (these are well-known hypergeometric orthogonal polynomials).

  • [1] Andrews, G. E. Askey, R. Roy, R. 1999 Special Functions Cambridge Univ. Press.

  • [2] Biró, A., A duality relation for certain triple products of automorphic forms, to appear in Israel J. Math..

  • [3] Edwards, H. M. 2001 Riemann's Zeta Function Dover New York.

  • [4] Groenevelt, W., The Wilson function transform, Int. Math. Res. Not. (2003), no. 52, 27792817.

  • [5] Groenevelt, W. 2006 Wilson function transforms related to Racah coefficients Acta Appl. Math. 91 133191 .

  • [6] Mitra, S. C. 1943 On certain transformations in generalized hypergeometric series J. Indian Math. Soc. 7 102109.

  • [7] Gradshteyn, I. S. Ryzhik, I. M. 2000 Table of Integrals, Series and Products 6 Academic Press.

  • [8] Slater, L. J. 1966 Generalized Hypergeometric Functions Cambridge Univ. Press.

  • [9] Whittaker, E. T. Watson, G. N. 1927 A Course of Modern Analysis Cambridge Univ. Press.

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 1 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0