Author:
Muammer KulaDepartment of Mathematics, Faculty of Science, Erciyes University, Kayseri 38039, Turkey

Search for other papers by Muammer Kula in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An explicit characterization of each of the separation properties Ti, i=0,1, , and T2 at a point p is given in the topological category of Cauchy spaces. Moreover, specific relationships that arise among the various Ti, i=0,1, , and T2 structures at p are examined in this category. Finally, we investigate the relationships between generalized separation properties and separation properties at a point p in this category.

  • [1] Adámek, J. Herrlich, H. Strecker, G. E. 1990 Abstract and Concrete Categories Wiley New York.

  • [2] Ball, R. 1980 Convergence and Cauchy structures on lattice ordered groups Trans. Amer. Math. Soc. 259 357392 .

  • [3] Ball, R. 1984 Distributive Cauchy lattices Algebra Universalis 18 134174 .

  • [4] Baran, M. 1992 Separation properties Indian J. Pure Appl. Math. 23 333341.

  • [5] Baran, M. 1992 Stacks and filters Turkish J. of Math.-Doğa 16 95108.

  • [6] Baran, M. 1992 Separation properties at p for the topological categories of reflexive relation spaces and preordered spaces Math. Balkanica 3 193198.

    • Search Google Scholar
    • Export Citation
  • [7] Baran, M. 1993 The notion of closedness in topological categories Comment. Math. Univ. Carolinae 34 383395.

  • [8] Baran, M. 1994 Generalized local separation properties Indian J. Pure Appl. Math. 25 615620.

  • [9] Baran, M. 1996 Separation properties in topological categories Math. Balkanica 10 3948.

  • [10] Baran, M. 1998 Completely regular objects and normal objects in topological categories Acta Math. Hungar. 80 211224 .

  • [11] Baran, M. 1998 T3 and T4-objects in topological categories Indian J. Pure Appl. Math. 29 5969.

  • [12] Baran, M. 2000 Closure operators in convergence spaces Acta Math. Hungar. 87 3345 .

  • [13] Baran, M. 2002 Compactness, perfectness, separation, minimality and closedness with respect to closure operators Applied Categorical Structures 10 403415 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [14] Baran, M. 2009 -objects in topological categories Applied Categorical Structures 17 591602 .

  • [15] Baran, M. Al-Safar, J. 2011 Quotient-reflective and bireflective subcategories of the category of preordered sets Topology Appl. 158 20762084 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [16] Baran, M. Altındiş, H. 1995 T0-objects in topological categories J. Univ. Kuwait (Sci.) 22 123127.

  • [17] Baran, M. Altındiş, H. 1996 T2-objects in topological categories Acta Math. Hungar. 71 4148 .

  • [18] Dikranjan, D. Giuli, E. 1987 Closure operators I Topology Appl. 27 129143 .

  • [19] Johnstone, P. T. 1977 Topos Theory London Math. Soc. Monographs 10 Academic Press New York.

  • [20] Katětov, M. 1965 On continuity structures and spaces of mappings Comm. Math. Univ. Car. 6 257278.

  • [21] Keller, H. 1968 Die Limes-uniformisierbarkeit der Limesräume Math. Ann. 176 334341 .

  • [22] Kowalsky, H. J. 1954 Limesräume und Komplettierung Math. Nachr. 12 301340 .

  • [23] Kula, M. 2011 A note on Cauchy spaces Acta Math. Hungar. 133 1432 .

  • [24] Lowen-Colebunders, E. 1989 Function Classes of Cauchy Continuous Maps M. Dekker New York.

  • [25] Marny, Th., Rechts-Bikategoriestrukturen in topologischen Kategorien, Dissertation, Freie Universität (Berlin, 1973).

  • [26] McKennon, K. 1975 The strict topology and the Cauchy structure of the spectrum of a C-algebra General Topology and its Applications 5 249262 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [27] Mielke, M. V. 1994 Separation axioms and geometric realizations Indian J. Pure Appl. Math. 25 711722.

  • [28] Nel, L. D. 1975 Initially structured categories and cartesian closedness Canad. J. Math. XXVII 13611377 .

  • [29] Preuss, G. 1988 Theory of Topological Structures. An Approach to Topological Categories D. Reidel Publ. Co. Dordrecht.

  • [30] Preuss, G. 1991 Improvement of Cauchy spaces Q&A in General Topology 9 159166.

  • [31] Preuss, G. 1995 Semiuniform convergence spaces Math. Japon. 41 465491.

  • [32] Rath, N., Precauchy Spaces, Ph.D. Thesis, Washington State University, 1994.

  • [33] Rath, N. 2000 Completion of a Cauchy space without the T2-restriction on the space Int. J. Math. Math. Sci. 24 163172 .

  • [34] Weck-Schwarz, S. 1991 T0-objects and separated objects in topological categories Quaestiones Math. 14 315325 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2022 1 0 0
Jul 2022 1 0 0
Aug 2022 3 1 0
Sep 2022 2 0 0
Oct 2022 4 1 0
Nov 2022 6 0 0
Dec 2022 2 0 0