View More View Less
  • 1 Department of Mathematics, Faculty of Science, Erciyes University, Kayseri 38039, Turkey
Restricted access

Abstract

An explicit characterization of each of the separation properties T i, i=0,1, , and T 2 at a point p is given in the topological category of Cauchy spaces. Moreover, specific relationships that arise among the various T i, i=0,1, , and T 2 structures at p are examined in this category. Finally, we investigate the relationships between generalized separation properties and separation properties at a point p in this category.

  • [1] Adámek, J. Herrlich, H. Strecker, G. E. 1990 Abstract and Concrete Categories Wiley New York.

  • [2] Ball, R. 1980 Convergence and Cauchy structures on lattice ordered groups Trans. Amer. Math. Soc. 259 357392 .

  • [3] Ball, R. 1984 Distributive Cauchy lattices Algebra Universalis 18 134174 .

  • [4] Baran, M. 1992 Separation properties Indian J. Pure Appl. Math. 23 333341.

  • [5] Baran, M. 1992 Stacks and filters Turkish J. of Math.-Doğa 16 95108.

  • [6] Baran, M. 1992 Separation properties at p for the topological categories of reflexive relation spaces and preordered spaces Math. Balkanica 3 193198.

    • Search Google Scholar
    • Export Citation
  • [7] Baran, M. 1993 The notion of closedness in topological categories Comment. Math. Univ. Carolinae 34 383395.

  • [8] Baran, M. 1994 Generalized local separation properties Indian J. Pure Appl. Math. 25 615620.

  • [9] Baran, M. 1996 Separation properties in topological categories Math. Balkanica 10 3948.

  • [10] Baran, M. 1998 Completely regular objects and normal objects in topological categories Acta Math. Hungar. 80 211224 .

  • [11] Baran, M. 1998 T 3 and T 4-objects in topological categories Indian J. Pure Appl. Math. 29 5969.

  • [12] Baran, M. 2000 Closure operators in convergence spaces Acta Math. Hungar. 87 3345 .

  • [13] Baran, M. 2002 Compactness, perfectness, separation, minimality and closedness with respect to closure operators Applied Categorical Structures 10 403415 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [14] Baran, M. 2009 -objects in topological categories Applied Categorical Structures 17 591602 .

  • [15] Baran, M. Al-Safar, J. 2011 Quotient-reflective and bireflective subcategories of the category of preordered sets Topology Appl. 158 20762084 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [16] Baran, M. Altındiş, H. 1995 T 0-objects in topological categories J. Univ. Kuwait (Sci.) 22 123127.

  • [17] Baran, M. Altındiş, H. 1996 T 2-objects in topological categories Acta Math. Hungar. 71 4148 .

  • [18] Dikranjan, D. Giuli, E. 1987 Closure operators I Topology Appl. 27 129143 .

  • [19] Johnstone, P. T. 1977 Topos Theory London Math. Soc. Monographs 10 Academic Press New York.

  • [20] Katětov, M. 1965 On continuity structures and spaces of mappings Comm. Math. Univ. Car. 6 257278.

  • [21] Keller, H. 1968 Die Limes-uniformisierbarkeit der Limesräume Math. Ann. 176 334341 .

  • [22] Kowalsky, H. J. 1954 Limesräume und Komplettierung Math. Nachr. 12 301340 .

  • [23] Kula, M. 2011 A note on Cauchy spaces Acta Math. Hungar. 133 1432 .

  • [24] Lowen-Colebunders, E. 1989 Function Classes of Cauchy Continuous Maps M. Dekker New York.

  • [25] Marny, Th., Rechts-Bikategoriestrukturen in topologischen Kategorien, Dissertation, Freie Universität (Berlin, 1973).

  • [26] McKennon, K. 1975 The strict topology and the Cauchy structure of the spectrum of a C -algebra General Topology and its Applications 5 249262 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [27] Mielke, M. V. 1994 Separation axioms and geometric realizations Indian J. Pure Appl. Math. 25 711722.

  • [28] Nel, L. D. 1975 Initially structured categories and cartesian closedness Canad. J. Math. XXVII 13611377 .

  • [29] Preuss, G. 1988 Theory of Topological Structures. An Approach to Topological Categories D. Reidel Publ. Co. Dordrecht.

  • [30] Preuss, G. 1991 Improvement of Cauchy spaces Q&A in General Topology 9 159166.

  • [31] Preuss, G. 1995 Semiuniform convergence spaces Math. Japon. 41 465491.

  • [32] Rath, N., Precauchy Spaces, Ph.D. Thesis, Washington State University, 1994.

  • [33] Rath, N. 2000 Completion of a Cauchy space without the T 2-restriction on the space Int. J. Math. Math. Sci. 24 163172 .

  • [34] Weck-Schwarz, S. 1991 T 0-objects and separated objects in topological categories Quaestiones Math. 14 315325 .

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu