Authors:
Hans-Peter A. Künzi Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa

Search for other papers by Hans-Peter A. Künzi in
Current site
Google Scholar
PubMed
Close
and
Salvador Romaguera Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain

Search for other papers by Salvador Romaguera in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors study quasi-uniformities that are generated by a family of weightable quasi-pseudometrics. Each totally bounded quasi-uniformity is of this kind. In some sense, which is described in this article, a weightable quasi-uniformity is fairly symmetric, with the associated weights generating small symmetrizers.

In the second part of the article we continue our investigations by generalizing a subclass of weightable quasi-uniformities to a more abstract level. We introduce the concept of a t-symmetrizable quasi-uniformity, that is, a quasi-uniformity possessing the property that there exists a totally bounded quasi-uniformity such that is a uniformity. It turns out that t-symmetrizable quasi-uniformities are closely related to quasi-uniformities generated by weightable quasi-pseudometrics possessing bounded weight functions. We show that several results that were originally proved for weightable quasi-pseudometrics (with bounded weights) still hold in a such apparently broader context.

  • [1] Bennett, H. R. Lutzer, D. J. 1972 A note on weak θ-refinability Gen. Top. Appl. 2 4954 .

  • [2] Cao, J. Rodríguez-López, J. 2006 On hyperspace topologies via distance functionals in quasi-metrics spaces Acta Math. Hungar. 112 249268 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [3] Colebunders, E. Wachter De, S. Lowen, B. 2011 Intrinsic approach spaces on domains Topology Appl. 158 23432355 .

  • [4] Fletcher, P. Lindgren, W. F. 1982 Quasi-uniform Spaces Dekker New York.

  • [5] Heckmann, R. 1999 Approximation of metric spaces by partial metric spaces Appl. Categ. Structures 7 7183 .

  • [6] Hursch, J. L. Jr. 1965 Proximity and height Math. Scand. 17 150160.

  • [7] Kopperman, R. Matthews, S. Pajoohesh, H. 2004 Partial metrizability in value quantales Appl. General Topology 5 115127.

  • [8] Künzi, H.-P. A. 1992 Functorial admissible quasi-uniformities on topological spaces Topology Appl. 43 2736 .

  • [9] Künzi, H.-P. A. 1993 Nonsymmetric topology Topology with Applications Bolyai Society Mathematical Studies 4 303338 Szekszárd, Hungary.

    • Search Google Scholar
    • Export Citation
  • [10] Künzi, H.-P. A. 2002 Nontransitive quasi-uniformities in the Pervin quasi-proximity class Proc. Amer. Math. Soc. 130 37253730 .

  • [11] Künzi, H.-P. A. 2009 An introduction to quasi-uniform spaces Mynard, F. Pearl, E. (eds.) Beyond Topology Contemp. Math. 486 239304 .

  • [12] Künzi, H.-P. A. Vajner, V. 1994 Weighted quasi-metrics Proceedings of the 8th Summer Conference on Topology and its Applications Ann. New York Acad. Sci. 728 6477.

    • Search Google Scholar
    • Export Citation
  • [13] Matthews, S. G. 1994 Partial metric topology Proceedings of the 8th Summer Conference on Topology and its Applications Ann. New York Acad. Sci. 728 183197.

    • Search Google Scholar
    • Export Citation
  • [14] Oltra, S. Romaguera, S. Sánchez-Pérez, E. A. 2002 Bicompleting weightable quasi-metric spaces and partial metric spaces Rend. Circ. Mat. Palermo 51 2 151162 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [15] O'Neill, S. J. 1996 Partial metrics, valuations, and domain theory Proceedings of 11th Summer Conference on Topology and its Applications Ann. New York Acad. Sci. 806 304315.

    • Search Google Scholar
    • Export Citation
  • [16] Rodríguez-López, J. Romaguera, S. 2003 Wijsman and hit-and-miss topologies of quasi-metric spaces Set-valued Analysis 11 323344 .

  • [17] Rodríguez-López, J. Romaguera, S. 2009 Hypertopologies and asymmetric topology Maio di, G. Naimpally, S. (eds.) Theory and Applications of Proximity, Nearness and Uniformity Quaderni di Matematica 22 315364.

    • Search Google Scholar
    • Export Citation
  • [18] Salbany, S. Romaguera, S. 1990 On countably compact quasi-pseudometrizable spaces J. Austral. Math. Soc. (Series A) 49 231240 .

  • [19] Schellekens, M. P. 2003 A characterization of partial metrizability: domains are quantifiable Theoret. Comput. Sci. 305 409432 .

  • [20] Schellekens, M. P. 2004 The correspondence between partial metrics and semivaluations Theoret. Comput. Sci. 315 135149 .

  • [21] Szpilrajn, E. 1930 Sur l'extension de l'ordre partiel Fund. Math. 16 386389.

  • [22] Vitolo, P. 1999 The representation of weighted quasi-metric spaces Rend. Istit. Mat. Univ. Trieste 31 95100.

  • [23] Waszkiewicz, P. 2003 The local triangle axiom in topology and domain theory Appl. General Topology 4 4770.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 10 0 1
Jan 2024 2 4 0
Feb 2024 9 1 0
Mar 2024 0 0 0
Apr 2024 3 0 0
May 2024 80 0 0
Jun 2024 0 0 0