Author:
Won Keun Min Department of Mathematics, Kangwon National University, Chuncheon 200-701, Korea

Search for other papers by Won Keun Min in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Let expX be the power set of a non-empty set X. A function γ: expX→expX is said to be monotonic iff ABX implies γAγB. Császár [2] investigated relations between the monotonic functions. The purpose of the paper is to investigate some results concerning particular monotonic functions.

  • [1] Abd El-Monsef, M. E. El-Deeb, S. N. Mahmoud, R. A. 1983 β-open sets and β-continuous mappings Bull. Fac. Sci. Assiut Univ. 12 7790.

    • Search Google Scholar
    • Export Citation
  • [2] Császár, Á. 1997 Generalized open sets Acta Math. Hungar. 75 6587 .

  • [3] Császár, Á. 2002 Generalized topology, generalized continuity Acta Math. Hungar. 96 351357 .

  • [4] Császár, Á. 2005 Generalized open sets in generalized topologies Acta Math. Hungar. 106 5366 .

  • [5] Levine, N. 1963 Semi-open sets and semi-continuity in topological spaces Amer. Math. Monthly 70 3641 .

  • [6] Mashhour, A. S. Abd El-Monsef, M. E. El-Deeb, S. N. 1982 On precontinuous and weak precontinuous mappings Proc. Math. and Phys. Soc. Egypt 53 4753.

    • Search Google Scholar
    • Export Citation
  • [7] Njåstad, O. 1964 On some classes of nearly open sets Pacific J. Math. 15 961970.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 11 1 0
Jan 2024 17 1 0
Feb 2024 4 0 0
Mar 2024 0 0 0
Apr 2024 10 0 0
May 2024 61 0 0
Jun 2024 0 0 0