Authors:
Daniel CerettoDepartamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071 Málaga, Spain

Search for other papers by Daniel Ceretto in
Current site
Google Scholar
PubMed
Close
,
Esther GarcíaDepartamento de Matemática Aplicada, Universidad Rey Juan Carlos, 28933 Móstoles (Madrid), Spain

Search for other papers by Esther García in
Current site
Google Scholar
PubMed
Close
, and
Miguel Gómez LozanoDepartamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071 Málaga, Spain

Search for other papers by Miguel Gómez Lozano in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

For an arbitrary group G and a G-graded Lie algebra L over a field of characteristic zero we show that the Kostrikin radical of L is graded and coincides with the graded Kostrikin radical of L. As an important tool for our proof we show that the graded Kostrikin radical is the intersection of all graded-strongly prime ideals of L. In particular, graded-nondegenerate Lie algebras are subdirect products of graded-strongly prime Lie algebras.

  • [1] Beattie, M. Stewart, P. 1991 Graded radicals of graded rings Acta Math. Hungar. 58 261272 .

  • [2] Cohen, M. Montgomery, S. 1984 Group-graded rings, smash products, and group actions Trans. Amer. Math. Soc. 282 237258 .

  • [3] Fernández López, A. García, E. Gómez Lozano, M. 2004 The Jordan socle and finitary Lie algebras J. Algebra 280 635654 .

  • [4] Fernández López, A. García, E. Gómez Lozano, M. 2007 The Jordan algebras of a Lie algebra J. Algebra 308 164177 .

  • [5] García, E. Gómez Lozano, M. 2009 A note on a result of Kostrikin Comm. Algebra 37 24052409 .

  • [6] García, E. Gómez Lozano, M. 2011 A characterization of the Kostrikin radical of a Lie algebra J. Algebra 346 266283 .

  • [7] Lam, T. Y. 2001 A First Course in Noncommutative Rings 2 Graduate Texts in Mathematics 131 Springer-Verlag New York .

  • [8] Liu, S. X. Oystaeyen Van, F. 1988 Group graded rings, smash products and additive categories Perspectives in Ring Theory Antwerp 1987 NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 233 Kluwer Acad. Publ. Dordrecht 299310.

    • Search Google Scholar
    • Export Citation
  • [9] Neher, E. 1996 Lie algebras graded by 3-graded root systems and Jordan pairs covered by grids Amer. J. Math. 118 439491 .

  • [10] Sands, A. D. Yahya, H. 2005 Some graded radicals of graded rings Math. Pannon. 16 211220.

  • [11] Thedy, A. 1985 Z-closed ideals of quadratic Jordan algebras Comm. Algebra 13 25372565 .

  • [12] Zelmanov, E. I. 1980 Absolute zero-divisors in Jordan pairs and Lie algebras Mat. Sb. (N.S.) 112 154 611629.

  • [13] Zelmanov, E. I. 1982 Absolute zero divisors and algebraic Jordan algebras Sibirsk. Mat. Zh. 23 841854 .

  • [14] Zelmanov, E. I. 1983 Lie algebras with algebraic associated representation Mat. Sb. (N.S.) 121 163 545561.

  • [15] Zelmanov, E. I. 1984 Characterization of the McCrimmon radical Sibirsk. Mat. Zh. 25 190192.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2022 1 0 0
Jul 2022 3 0 0
Aug 2022 2 0 0
Sep 2022 0 0 0
Oct 2022 1 1 0
Nov 2022 6 0 0
Dec 2022 0 0 0