View More View Less
  • 1 Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071 Málaga, Spain
  • 2 Departamento de Matemática Aplicada, Universidad Rey Juan Carlos, 28933 Móstoles (Madrid), Spain
Restricted access

Abstract

For an arbitrary group G and a G-graded Lie algebra L over a field of characteristic zero we show that the Kostrikin radical of L is graded and coincides with the graded Kostrikin radical of L. As an important tool for our proof we show that the graded Kostrikin radical is the intersection of all graded-strongly prime ideals of L. In particular, graded-nondegenerate Lie algebras are subdirect products of graded-strongly prime Lie algebras.

  • [1] Beattie, M. Stewart, P. 1991 Graded radicals of graded rings Acta Math. Hungar. 58 261272 .

  • [2] Cohen, M. Montgomery, S. 1984 Group-graded rings, smash products, and group actions Trans. Amer. Math. Soc. 282 237258 .

  • [3] Fernández López, A. García, E. Gómez Lozano, M. 2004 The Jordan socle and finitary Lie algebras J. Algebra 280 635654 .

  • [4] Fernández López, A. García, E. Gómez Lozano, M. 2007 The Jordan algebras of a Lie algebra J. Algebra 308 164177 .

  • [5] García, E. Gómez Lozano, M. 2009 A note on a result of Kostrikin Comm. Algebra 37 24052409 .

  • [6] García, E. Gómez Lozano, M. 2011 A characterization of the Kostrikin radical of a Lie algebra J. Algebra 346 266283 .

  • [7] Lam, T. Y. 2001 A First Course in Noncommutative Rings 2 Graduate Texts in Mathematics 131 Springer-Verlag New York .

  • [8] Liu, S. X. Oystaeyen Van, F. 1988 Group graded rings, smash products and additive categories Perspectives in Ring Theory Antwerp 1987 NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 233 Kluwer Acad. Publ. Dordrecht 299310.

    • Search Google Scholar
    • Export Citation
  • [9] Neher, E. 1996 Lie algebras graded by 3-graded root systems and Jordan pairs covered by grids Amer. J. Math. 118 439491 .

  • [10] Sands, A. D. Yahya, H. 2005 Some graded radicals of graded rings Math. Pannon. 16 211220.

  • [11] Thedy, A. 1985 Z-closed ideals of quadratic Jordan algebras Comm. Algebra 13 25372565 .

  • [12] Zelmanov, E. I. 1980 Absolute zero-divisors in Jordan pairs and Lie algebras Mat. Sb. (N.S.) 112 154 611629.

  • [13] Zelmanov, E. I. 1982 Absolute zero divisors and algebraic Jordan algebras Sibirsk. Mat. Zh. 23 841854 .

  • [14] Zelmanov, E. I. 1983 Lie algebras with algebraic associated representation Mat. Sb. (N.S.) 121 163 545561.

  • [15] Zelmanov, E. I. 1984 Characterization of the McCrimmon radical Sibirsk. Mat. Zh. 25 190192.

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu