The aim of this paper is to determine the locally densest horoball packing arrangements and their densities with respect to fully asymptotic tetrahedra with at least one plane of symmetry in hyperbolic 3-space extended with its absolute figure, where the ideal centers of horoballs give rise to vertices of a fully asymptotic tetrahedron. We allow horoballs of different types at the various vertices. Moreover, we generalize the notion of the simplicial density function in the extended hyperbolic space
(n≧2), and prove that, in this sense, the well known Böröczky–Florian density upper bound for “congruent horoball” packings of
does not remain valid to the fully asymptotic tetrahedra.
The density of this locally densest packing is ≈0.874994, may be surprisingly larger than the Böröczky–Florian density upper bound ≈0.853276 but our local ball arrangement seems not to have extension to the whole hyperbolic space.
[1] Bezdek, K. 2006 Sphere packings revisited European Journal of Combinatorics 27 864–883 .
[2] Böhm, J. Hertel, E. 1981 Polyedergeometrie in n-dimensionalen Räumen konstanter Krümmung Birkhäuser Basel.
[3] Böröczky, K. 1978 Packing of spheres in spaces of constant curvature Acta Math. Acad. Sci. Hungar. 32 243–261 .
[4] Kellerhals, R. 1998 Ball packings in spaces of constant curvature and the simplicial density function Journal für reine und angewandte Mathematik 494 189–203 .
[5] Kozma, T. R. and Szirmai, J., Optimally dense packings for fully asymptotic Coxeter tilings by horoballs of different types, Monatshefte für Mathematik, to appear.
[6] Milnor, J. 1994 Geometry Collected Papers 1 Publish or Perish.
[7] Molnár, E. 1997 The projective interpretation of the eight 3-dimensional homogeneous geometries Beiträge Alg. Geom. (Contr. Alg. Geom.) 38 261–288.
[8] Rogers, C. A. 1964 Packing and Covering Cambridge University Press.
[9] Szirmai, J. 2005 Horoball packings for the Lambert-cube tilings in the hyperbolic 3-space Beiträge Alg. Geom. (Contr. Alg. Geom.) 46 43–60.
[10] Szirmai, J. 2007 The densest geodesic ball packing by a type of Nil lattices Beiträge Alg. Geom. (Contr. Alg. Geom.) 48 383–397.
[11] Szirmai, J. 2010 The densest translation ball packing by fundamental lattices in Sol space Beiträge Alg. Geom. (Contr. Alg. Geom.) 51 353–373.
[12] Zagier, D. 2007 The dilogarithm function Frontiers in Number Theory, Physics, and Geometry II: On Conformal Field Theories, Discrete Groups and Renormalization 3–65 Springer.