View More View Less
  • 1 Institute of Mathematics, University of Białystok, ul. Akademicka 2, 15-267 Białystok, Poland
Restricted access

Abstract

A number of authors have studied the structure of a finite group G under the assumption that some subgroups of G are well located in G. We will generalize the notion of s-permutable and s-permutably embedded subgroups and we will obtain new criterions of p-nilpotency and supersolvability of groups. We also generalize some known results.

  • [1] Asaad, M. 1988 On the solvability of finite groups Arch. Math. 51 289293 .

  • [2] Asaad, M. Ballester-Bolinches, A. Pedraza-Aguilera, M. C. 1996 A note on minimal subgroups of finite groups Comm. Algebra 24 27712776.

    • Search Google Scholar
    • Export Citation
  • [3] Ballester-Bolinches, A. Esteban-Romero, R. Asaad, M. 2010 Products of Finite Groups Walter de Gruyter Berlin/New York .

  • [4] Ballester-Bolinches, A. Pedraza-Aguilera, M. C. 1996 On minimal subgroups of finite groups Acta Math. Hungar. 73 335342 .

  • [5] Ballester-Bolinches, A. Pedraza-Aguilera, M. C. 1998 Sufficient conditions for supersolubility of finite groups J. Pure Appl. Algebra 127 113118 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [6] Ballester-Bolinches, A. Wang, Y. 2000 Finite groups with some c-normal minimal subgroups J. Pure Appl. Algebra 153 121127 .

  • [7] Guo, W. 2008 On -supplemented subgroups of finite groups Manuscripta Math. 127 139150 .

  • [8] Guo, W. Lu, Y. Niu, W. 2010 s-embedded subgroups of finite groups Algebra and Logic 49 293304 .

  • [9] Guo, W. Shum, K. P. Skiba, A. N. 2009 On solubility and supersolubility of some classes of finite groups Sci. China Ser. A 52 272286 .

  • [10] Guo, W. Skiba, A. N. 2009 Finite groups with given s-embedded and n-embedded subgroups J. Algebra 321 28432860 .

  • [11] Guo, X. Y. Shum, K. P. 2003 Cover-avoidance properties and the structure of finite groups J. Pure Appl. Algebra 181 297308 .

  • [12] Hao, L. P. 2009 The influence of X-s-semipermutable subgroups on the structure of finite groups Southeast Asian Bulletin of Mathematics 33 421432.

    • Search Google Scholar
    • Export Citation
  • [13] Huppert, B. 1967 Endliche Gruppen I Springer-Verlag Berlin–New York .

  • [14] Li, Y. Wang, Y. 2004 On π-quasinormally embedded subgroups of finite groups J. Algebra 281 109123 .

  • [15] Li, Y. M. Wang, Y. M. Wei, H. Q. 2005 On p-nilpotency of finite groups with some subgroups π-quasinormally embedded Acta Math. Hungar. 108 283298 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [16] Miao, L. Guo, W. 2007 New criteria for p-nilpotency of finite groups Comm. Algebra 35 965974 .

  • [17] Ramadan, R. Ezzat Mohamed, M. Heliel, A. A. 2005 On c-normality of certain subgroups of prime order of finite groups Arch. Math. 85 203210 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [18] Robinson, D. J. S. 1996 A Course in the Theory of Groups Springer–Verlag New York .

  • [19] Shaalan, A. 1990 The influence of π-quasinormality of some subgroups on the structure of a finite group Acta Math. Hungar. 56 287293 .

  • [20] Shemetkov, L. A. 1978 Formations of Finite Groups Nauka Moscow in Russian.

  • [21] Wang, Y. 1996 c-normality of groups and its properties J. Algebra 180 954965 .

  • [22] Wang, Y. 2000 Finite groups with some subgroups of Sylow subgroups c-supplemented J. Algebra 224 467478 .

  • [23] Wang, Y. Guo, W. 2010 Nearly s-normality of groups and its properties Comm. Algebra 38 38213836 .

  • [24] Wei, H. Wang, Y. 2007 c-supplemented subgroups and p-nilpotency of finite groups Ukrain. Mat. Zh. 59 11211129 .

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 1 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0