Authors:
Jorge BustamanteFacultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, México

Search for other papers by Jorge Bustamante in
Current site
Google Scholar
PubMed
Close
,
Abisaí Carrillo-ZentellaFacultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, México

Search for other papers by Abisaí Carrillo-Zentella in
Current site
Google Scholar
PubMed
Close
, and
José M. QuesadaDepartamento de Matemáticas, Universidad de Jaén, Jaén, Spain

Search for other papers by José M. Quesada in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We present direct and strong converse theorems for a general sequence of positive linear operators satisfying some functional equations. The results can be applied to some extensions of Baskakov and Szász–Mirakyan operators.

  • [1] Becker, M. 1978 Global approximation theorems for Szász–Mirakjan and Baskakov operators in polynomial weight spaces Indiana Math. J. 27 127142 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [2] Bustamante, J. 2008 Estimates of positive linear operators in terms of second-order moduli J. Math. Anal. Appl. 345 203212 .

  • [3] Ditzian, Z. 1994 Direct estimate for Bernstein polynomials J. Approx. Theory 79 165166 .

  • [4] Ditzian, Z. Ivanov, K. G. 1993 Strong converse inequalities J. Anal. Math. 61 61111 .

  • [5] Ditzian, Z. Totik, V. 1987 Moduli of Smoothness Springer New York .

  • [6] Felten, M. 1998 Local and global approximation theorems for positive linear operators J. Approx. Theory 94 396419 .

  • [7] Finta, Z. 2005 On converse approximation theorems J. Math. Anal. Appl. 312 159180 .

  • [8] Guo, S. Tong, H. Zhang, G. 2002 Stechkin–Marchaud-type inequalities for Baskakov polynomials J. Approx. Theory 114 3347 .

  • [9] Guo, S. Qi, Q. 2003 Strong converse inequalities for Baskakov operators J. Approx. Theory 124 219231 .

  • [10] Haase, M. 2007 Convexity inequalities for positive operators Positivity 11 5768 .

  • [11] Impens, Ch. Gavrea, I. 2002 A Leibniz differentiation formula for positive operators J. Math. Anal. Appl. 271 175181 .

  • [12] Knoop, H. B. Zhou, X. L. 1994 The lower estimate for linear positive operators (II) Resultate Math. 25 315330.

  • [13] Lan, Qi Qiu 2002 The strong converse inequalities for generalized Baskakov-type operators Pure Applied Math. 18 49 317321 in Chinese.

    • Search Google Scholar
    • Export Citation
  • [14] Sikkema, P. C. 1970 On some linear positive operators Indag. Math. 32 327337.

  • [15] Totik, V. 1994 Strong converse inequalities J. Approx. Theory 76 369375 .

  • [16] Totik, V. 1994 Approximation by Bernstein polynomials Amer. J. Math. 116 9951018 .

  • [17] Volkov, Yu. I. 1978 Certain positive linear operators Math. Notes 23 363368 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2022 0 0 0
Sep 2022 0 0 0
Oct 2022 1 0 0
Nov 2022 1 0 0
Dec 2022 0 0 0
Jan 2023 0 0 0
Feb 2023 0 0 0