Author:
Van Manh PhungInstitut de Mathématiques, Université de Toulouse III, 31062 Toulouse Cedex 9, France
Department of Mathematics, Hanoi University of Education, 136 Xuan Thuy street, Cau Giay, Hanoi, Vietnam

Search for other papers by Van Manh Phung in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We prove that Kergin interpolation polynomials and Hakopian interpolation polynomials at the points of a Leja sequence for the unit disk D of a sufficiently smooth function f in a neighbourhood of D converge uniformly to f on D. Moreover, when fC(D), all the derivatives of the interpolation polynomials converge uniformly to the corresponding derivatives of f.

  • [1] Andersson, M. Passare, M. 1991 Complex Kergin interpolation J. Approx. Theory 64 214225 .

  • [2] Białas-Cież, L. and Calvi, J.-P., Pseudo Leja sequences, Ann. Mat. Pura Appl., available online .

  • [3] Bloom, T. 1981 Kergin interpolation of entire function on ℂn Duke Math. J. 48 6983 .

  • [4] Bloom, T. Calvi, J.-P. 1997 Kergin interpolants of holomorphic function Constr. Approx. 13 568583 .

  • [5] Bloom, T. Calvi, J.-P. 1998 On distribution of extremal points for Kergin interpolantion: Real case Ann. Inst. Fourier (Grenoble) 48 205222 .

  • [6] Bos, L. Calvi, J.-P. 1997 Kergin interpolant at the roots of unity approximate C2 functions J. d'Analyse Math. 72 203221 .

  • [7] Calvi, J.-P. and Phung, V. M., Lagrange interpolation at real projections of Leja sequences for the unit disk, Proc. Amer. Math. Soc. (accepted).

    • Search Google Scholar
    • Export Citation
  • [8] Calvi, J.-P. Phung, V. M. 2011 On the Lebesgue constant of Leja sequences for the disk and its applications to multivariate interpolation J. Approx. Theory 163 608622 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [9] Filipsson, L. 1997 Complex mean-value interpolation and approximation of holomorphic function J. Approx. Theory 91 244278 .

  • [10] Goodman, T. N. T. 1983 Interpolation in minimum seminorm and multivariate B-spline J. Approx. Theory 37 212223 .

  • [11] Hakopian, H. A. 1982 Multivatiate divided differences and multivariate interpolation of Lagrange and Hermite type J. Approx. Theory 34 286305 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [12] Liang, X. Z. 1986 On Hakopian interpolation in the disk J. Approx. Theory Appl. 2 3745.

  • [13] Liang, X. Z. Feng, R. Sun, X. 2007 Weighted mean convergence of Hakopian interpolation on the disk Anal. Theory Appl. 23 213227 .

  • [14] Liang, X. Z. , C. M. 1997 On the convergence of Hakopian interpolation and cubature J. Approx. Theory 88 2846 .

  • [15] Micchelli, C. A. 1980 A constructive approach to Kergin interpolation in Rk: multivariate B-spline and Lagrange interpolation Rocky Mountain J. Math. 10 485497 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [16] Ragozin, D. L. 1971 Constructive polynomial approximation on spheres and projective spaces Trans. Amer. Math. Soc. 162 157170.

  • [17] Sarantopoulos, Y. 1991 Bounds on the derivatives of polynomials on Banach spaces Math. Proc. Cambridge Philos. Soc. 110 307312 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2022 5 0 0
Sep 2022 0 0 0
Oct 2022 1 1 0
Nov 2022 4 0 0
Dec 2022 2 0 0
Jan 2023 4 0 0
Feb 2023 0 0 0