The notions of parallel sum and parallel difference of two nonnegative forms were introduced and studied by Hassi, Sebestyén, and de Snoo in [13] and [14]. In this paper we consider the parallel subtraction with much circumstances. Criteria are established for the solvability of the equation with an unknown when and are given. We identify as the minimal solution, and characterize all the solutions under the assumption where λ>1. The Galois correspondence induced by the map is also studied. We show that if the equation is solvable, then there is a unique -closed solution, namely . Finally, we consider some extremal problems such as the extreme points of the interval , and the characterization of the minimal forms in terms of the parallel sum.
[1] Anderson, W. N. Jr. 1971 Shorted operators Proc. Nat. Acad. Sci. U.S.A. 20 520–525.
[2] Anderson, W. N. Jr. Morley, T. D. Trapp, G. E. 1979 Characterization of parallel subtraction Proc. Nat. Acad. Sci. U.S.A. 76 3599–3601 .
[3] Anderson, W. N. Jr. Duffin, R. J. 1969 Series and parallel addition of matrices J. Math. Anal. Appl. 26 576–594 .
[4] Anderson, W. N. Jr. Duffin, R. J. Trapp, G. E. 1972 Parallel subtraction of matrices (Hermitian semidefinite) Proc. Nat. Acad. Sci. U.S.A. 69 2530–2531 .
[5] Anderson, W. N. Jr. Trapp, G. E. 1975 Shorted operators. II SIAM J. Appl. Math. 28 60–71 .
[6] Anderson, W. N. Jr. Trapp, G. E. 1988 The extreme points of a set of positive semidefinite operators Linear Algebra Appl. 106 209–217 .
[7] Ando, T. 1976 Lebesgue-type decomposition of positive operators Acta Sci. Math. (Szeged) 38 253–260.
[8] Brelot, M. 1971 On Topologies and Boundaries in Potential Theory Lecture Notes in Math. 175 Springer-Verlag Berlin–Heidelberg–New York.
[9] Choquet, G. 1969 Lectures on Analysis. Vol. II: Representation Theory New York–Amsterdam.
[10] Eriksson, S.-L. Leutwiler, H. 1986 A potential theoretic approach to parallel addition Math. Ann. 274 301–317 .
[11] Eriksson-Bique, S.-L. Leutwiler, H. 1994 Minimal operators from a potential-theoretic viewpoint ICPT '91 Amersfoort 1991 Kluwer Acad. Publ. Dordrecht 47–59.
[12] Green, W. L. Morley, T. D. 1994 The extreme points of order intervals of positive operators Adv. in Appl. Math. 15 360–370 .
[13] Hassi, S. Sebestyén, Z. Snoo de, H. 2010 Domain and range descriptions for adjoint relations, and parallel sums and differences of forms Recent Advances in Operator Theory in Hilbert and Krein spaces Oper. Theory Adv. Appl. 198 Birkhäuser Verlag Basel 211–227.
[14] Hassi, S. Sebestyén, Z. Snoo de, H. 2009 Lebesgue type decompositions for nonnegative forms J. Funct. Anal. 257 3858–3894 .
[15] Nishio, N. 1980 Characterization of Lebesgue-type decomposition of positive operators Acta Sci. Math. (Szeged) 42 143–152.
[16] Pekarev, È. L. Šmul'jan, Ju. L. 1976 Parallel addition and parallel subtraction of operators Izv. Akad. Nauk SSSR Ser. Mat. 40 366–387.
[17] Pekarev, E. L. 1992 Shorts of operators and some extremal problems Acta Sci. Math. (Szeged) 56 147–163.
[18] Fillmore, P. A. Williams, J. P. 1971 On operator ranges Advances in Math. 7 254–281 .
[19] Reed, M. Simon, B. 1980 Methods of Modern Mathematical Physics, I Functional Analysis Academic Press Boston revised and enlarged ed.
[20] Simon, B. 1978 A canonical decomposition for quadratic forms with applications to monotone convergence theorems J. Funct. Anal. 28 377–385 .
[21] Sakai, S. 1971 C ∗-Algebras and W∗-Algebras Springer-Verlag Berlin–Heidelberg–New York.
[22] Sebestyén, Z. and Titkos, T., Complement of forms, to appear in Positivity.
[23] Titkos, T., Lebesgue decomposition of contents via nonnegative forms, manuscript, submitted.