View More View Less
  • 1 Department of Mathematics and its Applications, Central European University, Nádor u. 9, 1051 Budapest, Hungary
Restricted access

Abstract

We prove the existence of infinitely many imaginary quadratic fields whose discriminant has exactly three distinct prime factors and whose class group has an element of a fixed large order. The main tool we use is solving an additive problem via the circle method.

  • [1] Balog, A. and Ono, K., Elements of class groups and Shafarevich–Tate groups of elliptic curves, Duke Math. J., (2003), 3563.

  • [2] Brüdern, J. Kawada, K. Wooley, T. D. 2000 Additive representation in thin sequences, II: The binary Goldbach problem Mathematica 47 117125.

    • Search Google Scholar
    • Export Citation
  • [3] Byeon, D. Lee, Sh. 2008 Divisibility of class numbers of imaginary quadratic fields whose discriminant has only two prime factors Proc. Japan Acad. Ser. A 84 810 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [4] Davenport, H. 2000 Multiplicative Number Theory 3 Springer.

  • [5] Hardy, G. H. Wright, E. M. 1979 An Introduction to the Theory of Numbers Oxford Univ. Press New York.

  • [6] Lapkova, K., Class number one problem for real quadratic fields of certain type, to appear in Acta Arith..

  • [7] Soundararajan, K. 2000 Divisibility of class numbers of imaginary quadratic fields J. London Math. Soc. (2) 61 681690 .

  • [8] Vaughan, R. C. 1981 The Hardy–Littlewood Method Cambridge Tracts in Math. 80 Cambridge Univ. Press Cambridge.

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu