View More View Less
  • 1 Institute of Mathematics and Computer Science, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Restricted access

Abstract

It is proved that every concircularly recurrent manifold must be necessarily a recurrent manifold with the same recurrence form.

  • [1] Boeckx, E. Kowalski, O. 1996 Riemannian Manifolds of Conullity Two World Scientific Singapore–New Jersey–London–Hong Kong .

  • [2] Arslan, K. De, U. C. Murathan, C. Yildiz, A. 2009 On generalized recurrent Riemannian manifolds Acta Math. Hungar. 123 2739 .

  • [3] Blair, D. E. Kim, J.-S. Tripathi, M. M. 2005 On the concircular curvature tensor of a contact metric manifold J. Korean Math. Soc. 42 883892 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [4] De, U. C. Gazi, K. 2009 On generalized concircularly recurrent manifolds Studia Math. Hung. 46 287296.

  • [5] De, U. C. Guha, N. 1991 On generalized recurrent manifolds J. Nat. Acad. Math. India 9 8592.

  • [6] Dubey, R. S. D. 1979 Generalized recurrent spaces Indian J. Pure Appl. Math. 10 15081513.

  • [7] Kirichenko, V. F. Pol'kina, E. A. 2009 A criterion for the concircular mobility of quasi-Sasakian manifolds Math. Notes 86 349356 . translated from Mat. Zametki, 86 (2009), 380–388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [8] Kirichenko, V. F. Vlasova, L. I. 2002 Concircular geometry of nearly Kählerian manifolds Sb. Math. 193 685707 . translation from Mat. Sb., 193 (2002), 53–76.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [9] Kobayashi, S. Nomizu, K. 1963 Foundations of Differential Geometry. I Interscience Publishers, a division of John Wiley & Sons New York–London.

    • Search Google Scholar
    • Export Citation
  • [10] Mantica, C. A. Molinari, L. G. 2011 A second-order identity for the Riemann tensor and applications Colloq. Math. 122 6982 .

  • [11] Maralabhavi, Y. B. Rathnamma, M. 1999 Generalized recurrent and concircular recurrent manifolds Indian J. Pure Appl. Math. 30 11671171.

    • Search Google Scholar
    • Export Citation
  • [12] Ryan, P. J. 1972 A class of complex hypersurfaces Colloq. Math. 26 175182.

  • [13] Ruse, H. S. Walker, A. G. Willmore, T. J. 1961 Harmonic Spaces Ed. Cremonese Roma.

  • [14] Singh, H. Khan, Q. 2000 On generalized recurrent Riemannian manifolds Publ. Math. Debrecen 56 8795.

  • [15] Vanhecke, L. 1977 Curvature tensors J. Korean Math. Soc. 14 143151.

  • [16] Walker, A. G. 1950 On Ruses's spaces of recurrent curvature Proc. London Math. Soc. 52 3664 .

  • [17] Wong, Y.-C. 1961 Recurrent tensors on a linearly connected differentiable manidfold Trans. Amer. Math. Soc. 99 325341 .

  • [18] Wong, Y.-C. 1962 Linear connexions with zero torsion and recurrent curvature Trans. Amer. Math. Soc. 102 471506 .

  • [19] Yano, K., Concircular geometry. I. Concircular transformations, II. Integrability conditions of ϱ μν=Φg μν, III. Theory of curves, IV. Theory of subspaces, V. Einstein spaces, Proc. Imp. Acad. Tokyo, 16 (1940), 195200, 354–360, 442–448, 505–511, 18 (1942), 446–451.

    • Search Google Scholar
    • Export Citation