View More View Less
  • 1 Département de Mathématiques, Faculté des Sciences de Gafsa, Zarroug, 2112 Gafsa, Tunisie
  • 2 Département de Mathématiques, Faculté des Sciences de Sfax, BP 802, 3038 Sfax, Tunisie
Restricted access

Abstract

We consider the -module structure on the spaces of symbols of differential operators acting on the spaces of weighted densities. We compute the necessary and sufficient integrability conditions of a given infinitesimal deformation of this structure and prove that any formal deformation is equivalent to its infinitesimal part. We study also the super analogue of this problem getting the same results.

  • [1] Agrebaoui, B. Ammar, F. Lecomte, P. Ovsienko, V. 2002 Multi-parameter deformations of the module of symbols of differential operators Internat. Mathem. Research Notices 16 847869 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [2] Agrebaoui, B. Ben Fraj, N. Ben Ammar, M. Ovsienko, V. 2003 Deformation of modules of differential forms Nonlinear Math. Physics 10 148156 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [3] Basdouri, I. Ben Ammar, M. 2007 Cohomology of acting on linear differential operators on the supercercle S 1|1 Letters in Mathematical Physics 81 239251 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [4] Basdouri, I. Ben Ammar, M. Ben Fraj, N. Boujelbene, M. Kammoun, K. 2009 Cohomology of the Lie superalgebra of contact vector fields on ℝ1|1 and deformations of the superspace of symbols J. Nonlinear Math. Physics 16 137.

    • Search Google Scholar
    • Export Citation
  • [5] Basdouri, I., Ben Ammar, M., Dali, B. and Omri, S., Deformation of -Modules of Symbols, .

  • [6] Ben Ammar, M. Boujelbene, M. 2008 -trivial deformation of -modules of symbols SIGMA 4 065 19 pages.

  • [7] Berezin, F. 1987 Introduction to Superanalysis Mathematical Physics and Applied Mathematics 9 Reidel Dordrecht.

  • [8] Feigin, B. L. Fuchs, D. B. 1980 Homology of the Lie algebras of vector fields on the line Func. Anal. Appl. 14 201212 .

  • [9] Fialowski, A. 1985 Deformations of Lie algebras Mat. Sbornik, USSR 127(169) 476482 English translation, Math. USSR-Sb., 55 (1986), 467–473.

    • Search Google Scholar
    • Export Citation
  • [10] Fialowski, A. 1988 An example of formal deformations of Lie algebras Proceedings of the NATO Conference on Deformation Theory of Algebras and Applications Il Ciocco, Italy 1986 Kluwer Dordrecht 375401 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [11] Gargoubi, H. Mellouli, N. Ovsienko, V. 2007 Differential operators on supercircle: Conformally equivariant quantization and symbol calculus Letters in Mathematical Physics 79 5165 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [12] Lecomte, P. B. A. 2000 On the cohomology of acting on differential operators and -equivariant symbols Indag. Math. NS. 11 95114 .

  • [13] Leites, D. 1983 Supermanifold Theory USSR Academy of Science Petrozavodsk.

  • [14] Nijenuis, A. Richardson, R. W. Jr. 1967 Deformations of homomorphisms of Lie groups and Lie algebras Bull. Amer. Math. Soc. 73 175179 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [15] Ovsienko, V. Roger, C. 1999 Deforming the Lie algebra of vector fields on S 1 inside the Lie algebra of pseudodifferential operators on S 1 AMS Transl. Ser. 2, (Adv. Math. Sci.) 194 211227.

    • Search Google Scholar
    • Export Citation
  • [16] Ovsienko, V. Roger, C. 1998 Deforming the Lie algebra of vector fields on S 1 inside the Poisson algebra on Comm. Math. Phys. 198 97110 .

  • [17] Richardson, R. W. 1969 Deformations of subalgebras of Lie algebras J. Diff. Geom. 3 289308.

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu