View More View Less
  • 1 Department of Mathematics, California State University, Fresno, 5245 N. Backer Ave., M/S PB 108, Fresno, CA, 93740-8001, USA
  • 2 Department of Mathematics, University of Iowa, 14 MacLean Hall, Iowa City, IA, 52242-1419, USA
Restricted access

Abstract

We give a new characterization of simple sets of polynomials B with the property that the set of B-multiplier sequences contains all Q-multiplier sequences for every simple set Q. We characterize sequences of real numbers which are multiplier sequences for every simple set Q, and obtain some results toward the partitioning of the set of classical multiplier sequences.

  • [1] Blakeman, K., Davis, E., Forgács, T. and Urabe, K., On Legendre multiplier sequences, to appear in Missouri J. Math. Sci..

  • [2] Chasse, M., Linear preservers and entire functions with restricted zero loci, Ph.D. dissertation, University of Hawai'i at Manoa (2011).

    • Search Google Scholar
    • Export Citation
  • [3] Craven, T. Csordas, G. 1983 The Gauss–Lucas theorem and Jensen polynomials Trans. Amer. Math. Soc. 278 415429 .

  • [4] Craven, T. Csordas, G. 1983 Location of zeros. I. Real polynomials and entire functions Illinois J. Math. 27 244278.

  • [5] Forgács, T. and Piotrowski, A., Multiplier sequences for generalized Laguerre bases, to appear in Rocky Mountain J. Math..

  • [6] Piotrowski, A., Linear operators and the distribution of zeros of entire functions, Ph.D. dissertation, University of Hawai'i at Manoa (2007).

    • Search Google Scholar
    • Export Citation
  • [7] Pólya, G. Schur, J. 1914 Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen J. Reine Angew. Math. 144 89113.

    • Search Google Scholar
    • Export Citation
  • [8] Szegö, G. 1939 Orthogonal Polynomials AMS Coll. Publ. XXIII Providence.

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu