Authors: H. Bell 1 and A. Klein 2
View More View Less
  • 1 BROCK UNIVERSITY DEPARTMENT OF MATHEMATICS ST. CATHARINES ONTARIO CANADA L2S 3A1 ST. CATHARINES ONTARIO CANADA L2S 3A1
  • 2 TEL AVIV UNIVERSITY SCHOOL OF MATHEMATICAL SCIENCES TEL AVIV 69978 ISRAEL TEL AVIV 69978 ISRAEL
Restricted access

Abstract  

A subset X of the ring

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$R$$ \end{document}
is called almost commutative if
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$X\backslash C_R \left( a \right)$$ \end{document}
is finite for all
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$a \in X$$ \end{document}
. We study commutativity in rings in which certain infinite sets of zero divisors are almost commutative.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 0 0
Jul 2020 0 0 0
Aug 2020 1 0 0
Sep 2020 0 0 0
Oct 2020 1 0 0
Nov 2020 0 0 0
Dec 2020 0 0 0