Author:
Р. Д. Гецадзе ПРОС П. ЧАВЧАВАДЗЕ I ТБИЛИС СК ИЙ ГОСУДАРСТВЕННЫЙ У НИВЕРСИТЕТ 380028 ТБИЛИСИ СССР

Search for other papers by Р. Д. Гецадзе in
Current site
Google Scholar
PubMed
Close
Restricted access
Работа касается вопр осов сходимости и рас ходимости кратных рядов Фурье п о системе Уолша-Пэли в метрикахС и L. Из доказанных тео рем следует, в частности, ч то еишf∈Е (Е=С или E=L) и существует н атуральноеi0(1≦i0≦N) так ое, чтои
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\begin{gathered} \omega (\delta _{i_0 } ;f)_E = o\left( {\frac{1}{{1n^N \frac{1}{{\delta _{i_0 } }}}}} \right) (\delta _{i_0 } \to 0) \hfill \\ \omega (\delta _k ;f)_E = o\left( {\frac{1}{{1n^N \frac{1}{{\delta _k }}}}} \right), k \ne i_0 (\delta _k \to 0), k = 1,2, ...,N, \hfill \\ \end{gathered}$$ \end{document}
тоN-кратный ряд Фурье функцииf по системе У олша-Пэли сходится по Прингсхе йму в смысле метрики пространств аЕ. Доказано также, что вы шеотмеченное утверж дение неусиляемо в метрикеL не только для системы Уолша, но и для некоторого класс а ОНС, ограниченных в совок упности.
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

For subscription options, please visit the website of Springer Nature.

Analysis Mathematica
Language English
Size B5
Year of
Foundation
1975
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3852 (Print)
ISSN 1588-273X (Online)