Author: R. Kerman 1
View More View Less
  • 1 Brock University Mathematics Department St. Catharines Ontario Canada
Restricted access

Abstract  

Пустьk-мерное евклид ово пространствоRk рассматривается как подмножествоRn. Зафиксируемр, 1<р<∞ иα >(n−k)/p, α≠п. Как обычно, бесселев потенциалJαf обобщенной функции Шварцаf наRn определяется с помощ ью ее преобразования Фурь е
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$(\widehat{G_\alpha f})(\xi ) = (2\pi )^{ - n/2} [1 + |\xi |^2 ]^{\alpha /2} f(\xi ), \xi \in R^n .B$$ \end{document}
, ξ∈Rn. В работе характ еризуются положител ьные весовые функцииw(x1,...,xk), которые при продолжении наRn с помощью равенстваw(x1,...,xk,...,xn)=w(x1, ...,xk) обладают с ледующим свойством: существует числос>0, не зависящее отf, такое, что
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\begin{gathered} \int\limits_{R^k } {|(G_\alpha f)(x_1 ,...,x_k ,0,...,0)w(x_1 ,...,x_k )|^p dx_1 ...dx_k \leqq } \hfill \\ \leqq C\int\limits_{R^n } {|f(x_1 ,...,x_n )w(x_1 ,...,x_n )|^p dx_1 ...dx_n } \hfill \\ \end{gathered}$$ \end{document}

  • Impact Factor (2019): 0.527
  • Scimago Journal Rank (2019): 0.384
  • SJR Hirsch-Index (2019): 15
  • SJR Quartile Score (2019): Q3 Analysis
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.702
  • Scimago Journal Rank (2018): 0.47
  • SJR Hirsch-Index (2018): 14
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer.

Analysis Mathematica
Language English
Size B5
Year of
Foundation
1975
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3852 (Print)
ISSN 1588-273X (Online)