Author: A. Belov 1
View More View Less
  • 1 ИВАНОВСКИЙ ГОС УДАРСТВЕННЫЙ УНИВЕР СИТЕТ УЛ. ЕР МАКА 39 153377 ИВАНОВО СССР
Restricted access

Abstract  

В статье изучается по ведение суммы лакуна рного тригонометрическог о ряда при приближени и к некоторой фиксиров анной произвольной т очке. Первая половина рабо ты посвящена изложен ию метода исследования локаль ных свойств суммы лакунарного ря да, разработанного ав тором. Вторая половина рабо ты посвящена приложе ниям этого метода. Здесь в частно сти, получаются необходи мые и достаточные усл овия для интегрируемости сум мы лакунарного ряда с весом при широк их условиях на вес. При ведем соответствующий рез ультат. Пустьϕр(x) — сумма ряда
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$a + \sum\limits_{n = 1}^\infty {a_n \cos (\lambda _n x + \psi _n )}$$ \end{document}
, гдеа, а n,λ n,ψ n — действительные числа,εa n /2 <∞,a n≧0,λ n>0 приn≧1 и
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathop {\inf }\limits_{n \geqq 1} \lambda _{n + 1} /\lambda _n > 1$$ \end{document}
. При этих условиях функцияϕ(х) определена почти всю ду. Пустьр>0 иω(х) — положительная неуб ывающая функция, определенная при все хх>0, которая при некот оромC>0 удовлетворяет услов ию:ω(2x)≦ ≦Cω(х) при всехх>0. Тогда имеет место Теорема. Для того, чтоб ы интеграл
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\int\limits_{ + 0} {|\varphi (x)|^p \frac{{dx}}{{\omega (x)}}}$$ \end{document}
сходился, необходимо и достато чно, чтобы сходились все р яды
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\begin{gathered} \sum\limits_{n = 1}^\infty {D_n (\sum\limits_{k = n}^\infty {a_k^2 } )^{p/2} ,} \sum\limits_{n = 2}^\infty {D_n |a_n + \sum\limits_{k = 1}^{n - 1} {a_k \cos } \psi _k |^p ,} \hfill \\ \sum\limits_{n = 2}^\infty {D_n (pj)|\sum\limits_{k = 1}^{n - 1} {a_k \lambda _k^j \cos (\psi _k + \pi j/2)} |^p ,} j = 1,2,..., \hfill \\ \end{gathered}$$ \end{document}
, где
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$D_n = \int\limits_{I_n } {\frac{{dx}}{{\omega (x)}},} D_n (pj) = \int\limits_{I_n } {\frac{{x^{pj} dx}}{{\omega (x)}},} a I_n = [\pi \lambda _n^{ - 1} ,\pi \lambda _{n - 1}^{ - 1} ]$$ \end{document}

  • Impact Factor (2019): 0.527
  • Scimago Journal Rank (2019): 0.384
  • SJR Hirsch-Index (2019): 15
  • SJR Quartile Score (2019): Q3 Analysis
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.702
  • Scimago Journal Rank (2018): 0.47
  • SJR Hirsch-Index (2018): 14
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer.

Analysis Mathematica
Language English
Size B5
Year of
Foundation
1975
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3852 (Print)
ISSN 1588-273X (Online)