Authors:
E. Dolzhenko тВЕННыИ УНИВЕРс ИтЕтИМЕНИ М. В. лОМОНОс ОВА МЕхАНИкО-МАтЕМАт ИЧЕскИИ ФАкУльтЕт МОскОВскИИ гОсУ ДАРс 17 234 Mockba CCCP 17 234 Mockba CCCP

Search for other papers by E. Dolzhenko in
Current site
Google Scholar
PubMed
Close
and
Kh. Makhmudov тВЕННыИ УНИВЕРс ИтЕтИМЕНИ М. В. лОМОНОс ОВА МЕхАНИкО-МАтЕМАт ИЧЕскИИ ФАкУльтЕт МОскОВскИИ гОсУ ДАРс 17 234 Mockba CCCP 17 234 Mockba CCCP

Search for other papers by Kh. Makhmudov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

пУстьE — ИжМЕРИМОЕ пО лЕБЕгУ ОгРАНИЧЕННОЕ МНОжЕстВО пОлОжИтЕльНОИ плОЩА ДИ mes2E кОМплЕксНОИ плОск ОстИ с. кАк ОБыЧНО, пРИp≧1 ОБОжНАЧИМ ЧЕРЕжLp(E) БА НАхОВО пРОстРАНстВО ИжМЕРИ Мых пО лЕБЕгУ НАE кОМплЕксНОжНАЧНых Ф УНкцИИf с сУММИРУЕМО Иp—стЕпЕНьУ Их МОДУль И ОБыЧНОИ НОРМОИ
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left\| \cdot \right\|_p = \left\| \cdot \right\|_{L_p (E)}$$ \end{document}
. ЧЕР ЕжLpRn(f,E) ОБОжНАЧИМ НАИМЕН ьшЕЕ УклОНЕНИЕfLp(E) От РАц ИОНАльНых ФУНкцИИ ст ЕпЕНИ ≦n кОМплЕксНОгО пЕРЕМЕ ННОгОz пО НОРМЕ ∥ ∥. пОлОжИМf(z)=0 Дльz∃CE,Eδδ-ОкРЕстНОсть МНО жЕстВАE (δ>0), И
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\omega _p (\delta ,f) = \mathop {\sup {\mathbf{ }}}\limits_{\left| h \right|< \delta } \{ \int\limits_{E_\sigma } {\int {{\mathbf{ }}|f(z + h) - f(z)|^p } d\sigma } \} ^{1/p} .$$ \end{document}
тЕОРЕМА.пУсть 1≦p<2,fLp(E),n≧4.тОгДА
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\begin{array}{*{20}c} {L^p R_n (f,E) \leqq 12\omega _p \left( {\frac{{\delta + \ln n}}{{\sqrt n }},f} \right){\mathbf{ }}npu{\mathbf{ }}p = 1,} \\ {L^p R_n (f,E) \leqq \frac{{24}}{{(p - 1)(2 - p)}}\omega _p (n^{(p - 2)/2p} ,f){\mathbf{ }}npu{\mathbf{ }}1< p< 2,} \\ {L^1 R_n (\bar z,[0,1] \times [0,1]) \geqq \frac{1}{{32\sqrt n }}.} \\ \end{array}$$ \end{document}
.
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

For subscription options, please visit the website of Springer Nature.

Analysis Mathematica
Language English
Size B5
Year of
Foundation
1975
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3852 (Print)
ISSN 1588-273X (Online)