Author:
K. Osipenko МОскОВскИИ АВИА цИОННыИ тЕхНОлОгИЧЕ скИИ ИНстИтУт ИМЕНИ к. Ё. цИОлкОВскОгО пЕтРО ВкА 27 103 767 МОскВА сссР пЕтРО ВкА 27 103 767 МОскВА сссР

Search for other papers by K. Osipenko in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

Дль сИстЕМы РАжлИЧНы х тОЧЕкΤ=(t1,...,tn) Иж ОтРЕ жкА [−1,1] Иk∃[0,1) ВВОДИтсь ВЕлИЧ ИНА

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$L_n (\tau ,p,k) = \mathop {\max }\limits_{t \in [ - 1,1]} (\mathop \Sigma \limits_{j = 1}^n |D_j (t)|^p )^{1/p} ,$$ \end{document}
где
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$D_j (t) = \frac{{\omega _j (t)}}{{\omega _j (t_j )}}[1 - kW_j^2 (t)],{\mathbf{ }}\omega _j (t) = \mathop \prod \limits_{\begin{array}{*{20}c} {m = 1} \\ {m \ne 1} \\ \end{array} }^n W_m (t),{\mathbf{ }}W_m (t) = \frac{{t - t_m }}{{1 - kt_m t}}.$$ \end{document}
пРИk=0 ОНА сОВпАДАЕт с кОНс тАНтОИ лЕБЕгА, сВьжАН НОИ с ИНтЕРпОльцИЕИ МНОгО ЧлЕНОМ лАгРАНжА. пОкАжАНА сВ ьжь ВЕлИЧИНыLn(Τ, p, k) с жАД АЧАМИ ИНтЕРпОльцИИ АНАлИт ИЧЕскИх ФУНкцИИ. Дль сИстЕМы
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$Z = \left\{ {sn\left[ {\left( {\frac{{2j - 1}}{n} - 1} \right)K,k} \right]} \right\}_{j = 1}^n ,$$ \end{document}
ьВльУЩЕИсь АНАлОгОМ ЧЕБышЕВскОИ сИстЕМы, пОлУЧЕНы ОцЕНкИLn(Z, p, k) пРИp≧2 Иp≧1.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

For subscription options, please visit the website of Springer Nature.

Analysis Mathematica
Language English
Size B5
Year of
Foundation
1975
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3852 (Print)
ISSN 1588-273X (Online)