Author:
А. Ф. Леонтьев ОТДЕЛ ФИЗИКИ И МАТЕ МАТИКИ БАШКИРСКОГО Ф ИЛИАЛА АН СССР УЛ. ТУКАЕВ А 50 450 057 УФА СССР

Search for other papers by А. Ф. Леонтьев in
Current site
Google Scholar
PubMed
Close
Restricted access
LetD be an infinite convex domain and letF(z) bean analytic function inD. It is proved that there exist a functionf(z) regular inD and continuous in¯D+ (except for infinity) and an entire function of growth order at most 1 and of minimal type, such that
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$F(z) = \sum\limits_{k = 0}^\infty {c_k f^{(k)} (z), z \in D.}$$ \end{document}
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

For subscription options, please visit the website of Springer Nature.

Analysis Mathematica
Language English
Size B5
Year of
Foundation
1975
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3852 (Print)
ISSN 1588-273X (Online)