View More View Less
  • 1 Chalmers University of Technology Göteborg University Department of Mathematics 412 96 Göteborg Sweden 412 96 Göteborg Sweden
Restricted access

Abstract  

ИжУЧАЕтсь кРИтИЧЕск Аь скОРОсть УБыВАНИь Дль РАжлИЧНых МЕтОДОВ сУ ММИРОВАНИь. пРОтОтИпОМ тАкИх РЕж УльтАтОВ ьВльЕтсь сл ЕДУУЩЕЕ УтВЕРжДЕНИЕ, ОтНОсьЩ ЕЕсь к МЕтОДУ сУММИРОВАНИ ь АБЕль: ЕслИ

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$a_n = O(n^p ) \Pi pI x \to \infty$$ \end{document}
Дль НЕкОтОРОгОp И
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\sum {a_n e^{ - nx} = O(e^{ - \eta (x)/x} ) \Pi pI x \to + 0,}$$ \end{document}
пРИx→+0, гДЕ ФУНкцИьη УДОВлЕт ВОРьЕт УслОВИУ
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathop {\lim \sup }\limits_{x \to + 0} \eta (x) = \infty ,$$ \end{document}
тО кОЁФФИцИЕНтыan РАВ Ны НУлУ Дль ВсЕхn. Мы пОкАжыВАЕМ, ЧтО пОД ОБНыИ РЕжУльтАт ИМЕЕ т МЕстО Дль шИРОкОгО клАссА МЕтОДОВ сУММИРОВАНИ ь.