View More View Less
  • 1 МОс кОВскИИ гОсУДАРстВЕ ННыИ ИНстИтУт ЁлЕктР ОННОИ тЕхНИкИ 103 498 МОскВА РОссИь 103 498 МОскВА РОссИь
Restricted access

Abstract  

An upper estimate is proved for the Lebesgue function with respect to Jacobi polynomials

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$P_m^{(\alpha ,\beta )} (x)$$ \end{document}
in the case of half integerα and it is expressed in terms of the matrix coefficients determining the linear summation method. The author also proves the analogue of the well-known theorem by S. M. Nikol'skii on the necessary and sufficient condition for the summability of trigonometric Fourier series.