View More View Less
  • 1 Eötvös L. University Department of Numerical Analysis Múzeum Krt. 6-8 1088 Budapest Hungary
Restricted access

Abstract  

The Hardy type inequality

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left( * \right) \left( {\sum\limits_{k = 1}^\infty {\frac{{\left| {\hat f\left( k \right)} \right|^p }}{{k^{2 - p} }}} } \right)^{I/p} \leqslant C_p \left\| f \right\|_{H_{ * * }^P } \left( {1/2< p \leqslant 2} \right)$$ \end{document}
is proved for functionsf belonging to the Hardy spaceH**p (Gm) defined by means of a maximal function. We extend (*) for 2<p<∞ when the Vilenkin-Fourier coefficients off are λ-blockwise monotone. It will be shown that under certain conditions on the Vilenkin system (in particular, for some unbounded type, too) a converse version of (*) holds also for allp>0 provided that the Vilenkin-Fourier coefficients off are monotone.