View More View Less
  • 1 University of Budapest “Elte” Department of Numerical Analysis Múzeum KRT. 6-8 1088 Budapest Hungary
Restricted access

Abstract  

It is shown that the maximal operator of the one-dimensional dyadic derivative of the dyadic integral is bounded from the dyadic Hardy-Lorentz spaceHp,q toLp,q (1/2<p<∞, 0<q≤∞) and is of weak type (L1,L1). We define the twodimensional dyadic hybrid Hardy spaceH1 and verify that the corresponding maximal operator of a two-dimensional function is of weak type (H1 ,L1). As a consequence, we obtain that the dyadic integral of a two-dimensional functionfεH1LlogL is dyadically differentiable and its derivative is a.e.f.

  • Impact Factor (2019): 0.527
  • Scimago Journal Rank (2019): 0.384
  • SJR Hirsch-Index (2019): 15
  • SJR Quartile Score (2019): Q3 Analysis
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.702
  • Scimago Journal Rank (2018): 0.47
  • SJR Hirsch-Index (2018): 14
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer.

Analysis Mathematica
Language English
Size B5
Year of
Foundation
1975
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3852 (Print)
ISSN 1588-273X (Online)