Author:
View More View Less
• 1 Eötvös Loránd University Department of Numerical Analysis Pázmány P. Sétány 1/C 1117 Budapest Hungary
Restricted access

## Abstract

We investigate the Kronecker product of bounded Ciesielski systems, which can be obtained from the spline systems of order (m, k) in the same way as the Walsh system from the Haar system. It is shown that the maximal operator of the Fejér means of the d-dimensional Ciesielski-Fourier series is bounded from the Hardy space Hp([0, 1)d1×…×[0, 1)dl to Lp ([0, 1)d) if 1/2<p<∞ and mj≥0, ‖kj‖≤mj+1. By an interpolation theorem, we get that the maximal operator is also of weak type (

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$(H_1^{\# _i } ,L_1 )$$ \end{document}
) (i=1,…,l), where the Hardy space
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$H_1^{\# _i }$$ \end{document}
is defined by a hybrid maximal function and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$H_1^{\# _i } \supset L(\log L)^{l - 1}$$ \end{document}
. As a consequence, we obtain that the Fejér means of the Ciesielski-Fourier series of a function f converge to f a.e. if f
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$H_1^{\# _i }$$ \end{document}
and converge in a cone if fεL1.

Jun 2020 0 0 0
Jul 2020 0 0 0
Aug 2020 2 0 0
Sep 2020 0 0 0
Oct 2020 1 0 0
Nov 2020 0 0 0
Dec 2020 0 0 0

## Rate of approximation by rectangular partial sums of double orthogonal series

Author: V. A. Andrienko

## Lacunary (0; 0, 1) interpolation on the roots of Jacobi polynomials and their derivatives, respectively. I (Existence, explicit formulae, unicity)

Authors: I. Joó and L. G. Pál