View More View Less
  • 1 Indian Institute of Technology Madras Department of Mathematics Chennai 600 036 India
Restricted access

Abstract  

In this paper, it is shown that the class of right Fourier multipliers for the Sobolev space W k,p(H n) coincides with the class of right Fourier multipliers for L p(H n) for k ∈ ℕ, 1 < p < ∞. Towards this end, it is shown that the operators R j
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\bar R$$ \end{document}
j−1 and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\bar R$$ \end{document}
j R j−1 are bounded on L p(H n), 1 < p < ∞, where
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$R_j = \frac{\partial } {{\partial z_j }} - \frac{i} {4}\bar z_j \frac{\partial } {{\partial t}}, \bar R_j = \frac{\partial } {{\partial \bar z_j }} + \frac{i} {4}z_j \frac{\partial } {{\partial t}}$$ \end{document}
and ℒ is the sublaplacian on H n. This proof is based on the Calderon-Zygmund theory on the Heisenberg group. It is also shown that when p = 1, the class of right multipliers for the Sobolev space W k,1(H n) coincides with the dual space of the projective tensor product of two function spaces.

  • Impact Factor (2019): 0.527
  • Scimago Journal Rank (2019): 0.384
  • SJR Hirsch-Index (2019): 15
  • SJR Quartile Score (2019): Q3 Analysis
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.702
  • Scimago Journal Rank (2018): 0.47
  • SJR Hirsch-Index (2018): 14
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer.

Analysis Mathematica
Language English
Size B5
Year of
Foundation
1975
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3852 (Print)
ISSN 1588-273X (Online)